Advertisements
Advertisements
Question
Which of the following cannot be the probability of an event?
Options
`1/3`
`3/5`
`5/3`
1
Solution
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
`P (A) = m/n`
Note that m is always less than or equal to n and n is a positive integers, it can’t be zero. But, m is a non negative integer. So, the maximum value of probability of an event is` n/n=1`, which is the probability of a certain event and the minimum value of it is 0, which is the probability of an impossible event. For any other events the value is in between 0 and 1.
All the options except (c) satisfy the above criteria’s.
APPEARS IN
RELATED QUESTIONS
Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:
Two heads: 95 times
One tail: 290 times
No head: 115 times
Find the probability of occurrence of each of these events.
A company selected 2400 families at random and survey them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed in the table below:
Monthly income: (in Rs) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 7000-10000 10000-13000 13000-16000 16000 or more |
10 0 1 2 1 |
160 305 535 469 579 |
25 27 29 29 82 |
0 2 1 25 88 |
If a family is chosen, find the probability that family is:
(i) earning Rs10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000-16000 per month and owning more than 2 vehicle.
(v) owning not more than 1 vehicle
(vi) owning at least one vehicle.
Define an event.
The percentage of attendance of different classes in a year in a school is given below:
Class: | X | IX | VIII | VII | VI | V |
Attendance: | 30 | 62 | 85 | 92 | 76 | 55 |
What is the probability that the class attendance is more than 75%?
A bag contains 50 coins and each coin is marked from 51 to 100. One coin is picked at random. The probability that the number on the coin is not a prime number, is
Two coins are tossed 1000 times and the outcomes are recorded as below:
Number of heads | 2 | 1 | 0 |
Frequency | 200 | 550 | 250 |
Based on this information, the probability for at most one head is
80 bulbs are selected at random from a lot and their life time (in hrs) is recorded in the form of a frequency table given below :
Life time (in hours) | 300 | 500 | 700 | 900 | 1100 |
Frequency | 10 | 12 | 23 | 25 | 10 |
The probability that bulbs selected randomly from the lot has life less than 900 hours is:
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has defective bulbs less than 4?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have
- no defective part
- atleast one defective part
- not more than 5 defective parts
- more than 13 defective parts
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is:
- 40 years or more
- under 40 years
- having age from 30 to 39 years
- under 60 but over 39 years