Advertisements
Advertisements
Question
Two coins are tossed simultaneously. The probability of getting atmost one head is
Options
`1/4`
`3/4`
`1/2`
`1/4`
Solution
The random experiment is tossing two coins simultaneously.
All the possible outcomes are HH, HT, TH, and TT.
Let A be the event of getting at most one head.
The number of times A happens is 3.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P(A) and is given by
` P(A) =m/n`
Therefore, we have
` P(A) = 3/4`
APPEARS IN
RELATED QUESTIONS
In a cricket match, a batswoman hits a boundary 6 times out of 30 balls she plays. Find the probability that she did not hit a boundary.
Define a trial.
Mark the correct alternative in each of the following:
The probability of an impossible event is
The probability an event of a trial is
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has defective bulbs from 2 to 6?
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has defective bulbs less than 4?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have not more than 5 defective parts
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is:
- 40 years or more
- under 40 years
- having age from 30 to 39 years
- under 60 but over 39 years
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is under 40 years
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is having age from 30 to 39 years