Advertisements
Advertisements
Question
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have
- no defective part
- atleast one defective part
- not more than 5 defective parts
- more than 13 defective parts
Solution
Total number of working days, n(S) = 200
i. Number of days in which no defective part is,
n(E1) = 50
Probability that no defective part = `(n(E_1))/(n(S))`
= `50/200`
= `1/4`
= 0.25
ii. Number of days in which atleast one defective part is,
n(E2) = 32 + 22 + 18 + 12 + 12 + 10 + 10 + 10 + 8 + 6 + 6 + 2 + 2 = 150
∴ Probability that atleast one defective part = `(n(E_2))/(n(S))`
= `150/200`
= `3/4`
= 0.75
iii. Number of days in which not more than 5 defective parts,
n(E3) = 50 + 32 + 22 + 18 + 12 + 12 = 146
∴ Probability that not more than 5 defective parts
= `(n(E_3))/(n(S))`
= `146/200`
= 0.73
iv. Number of days in which more than 13 defective parts,
n(E4) = 0
= `(n(E_4))/(n(S))`
= `0/200`
= 0
Hence, the probability that more than 13 defective parts is 0.
APPEARS IN
RELATED QUESTIONS
In a particular section of Class IX, 40 students were asked about the months of their birth and the following graph was prepared for the data so obtained:-
Find the probability that a student of the class was born in August.
Three coins are tossed simultaneously 100 times with the following frequencies of different outcomes:
Outcome: | No head | One head | Two heads | Three heads |
Frequency: | 14 | 38 | 36 | 12 |
If the three coins are simultaneously tossed again, compute the probability of:
(i) 2 heads coming up.
(ii) 3 heads coming up.
(iii) at least one head coming up.
(iv) getting more heads than tails.
(v) getting more tails than heads.
In a cricket match, a batsman hits a boundary 6 times out of 30 balls he plays.
(i) he hits boundary
(ii) he does not hit a boundary.
The blood groups of 30 students of class IX are recorded as follows:
A | B | O | O | AB | O | A | O | B | A | O | B | A | O | O |
A | AB | O | A | A | O | O | AB | B | A | O | B | A | B | O |
(i) A
(ii) B
(iii) AB
(iv) O
A company selected 2400 families at random and survey them to determine a relationship between income level and the number of vehicles in a home. The information gathered is listed in the table below:
Monthly income: (in Rs) |
Vehicles per family | |||
0 | 1 | 2 | Above 2 | |
Less than 7000 7000-10000 10000-13000 13000-16000 16000 or more |
10 0 1 2 1 |
160 305 535 469 579 |
25 27 29 29 82 |
0 2 1 25 88 |
If a family is chosen, find the probability that family is:
(i) earning Rs10000-13000 per month and owning exactly 2 vehicles.
(ii) earning Rs 16000 or more per month and owning exactly 1 vehicle.
(iii) earning less than Rs 7000 per month and does not own any vehicle.
(iv) earning Rs 13000-16000 per month and owning more than 2 vehicle.
(v) owning not more than 1 vehicle
(vi) owning at least one vehicle.
The following table gives the life time of 400 neon lamps:
Life time (in hours) |
300-400 | 400-500 | 500-600 | 600-700 | 700-800 | 800-900 | 900-1000 |
Number of lamps: | 14 | 56 | 60 | 86 | 74 | 62 | 48 |
A bulb is selected of random, Find the probability that the the life time of the selected bulb is:
(i) less than 400
(ii) between 300 to 800 hours
(iii) at least 700 hours.
Given below is the frequency distribution of wages (in Rs) of 30 workers in a certain factory:
Wages (in Rs) | 110-130 | 130-150 | 150-170 | 170-190 | 190-210 | 210-230 | 230-250 |
No. of workers | 3 | 4 | 5 | 6 | 5 | 4 | 3 |
A worker is selected at random. Find the probability that his wages are:
(i) less than Rs 150
(ii) at least Rs 210
(iii) more than or equal to 150 but less than Rs 210.
Define an elementary event.
A die is thrown 100 times. If the probability of getting an even number is `2/5` . How many times an odd number is obtained?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have more than 13 defective parts