मराठी

A Parallel Beam of Light of Wavelength 500 Nm Falls on a Narrow Slit and the Resulting Diffraction Pattern is Observed on a Screen 1 M Away. - Physics

Advertisements
Advertisements

प्रश्न

A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observed on a screen 1 m away. It is observed that the first minimum is a distance of 2.5 mm away from the centre. Find the width of the slit.

उत्तर

\[\text { Distance of first minimum y } = \frac{\lambda}{a}\]

\[ \Rightarrow\text {  slit width a } = \frac{\lambda}{y}\]

\[ \therefore a = \frac{500 \times {10}^{- 9}}{2 . 5 \times {10}^{- 4}} = 0 . 002 m\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Foreign Set 3

संबंधित प्रश्‍न

Show that the angular width of the first diffraction fringe is half that of the central fringe.


A beam of light consisting of two wavelengths, 650 nm and 520 nm, is used to obtain interference fringes in a Young’s double-slit experiment.

What is the least distance from the central maximum where the bright fringes due to both the wavelengths coincide?


How does an unpolarized light incident on a polaroid get polarized? Describe briefly, with the help of a necessary diagram, the polarization of light by reflection from a transparent medium.


A thin paper of thickness 0.02 mm having a refractive index 1.45 is pasted across one of the slits in a Young's double slit experiment. The paper transmits 4/9 of the light energy falling on it. (a) Find the ratio of the maximum intensity to the minimum intensity in the fringe pattern. (b) How many fringes will cross through the centre if an identical paper piece is pasted on the other slit also? The wavelength of the light used is 600 nm.


In Young's double slit experiment using monochromatic light of wavelength 600 nm, 5th bright fringe is at a distance of 0·48 mm from the centre of the pattern. If the screen is at a distance of 80 cm from the plane of the two slits, calculate:
(i) Distance between the two slits.
(ii) Fringe width, i.e. fringe separation.


Two slits, 4mm apart, are illuminated by light of wavelength 6000 A° what will be the fringe width on a screen placed 2 m from the slits?


In Young's double slit experiment using light of wavelength 600 nm, the slit separation is 0.8 mm and the screen is kept 1.6 m from the plane of the slits. Calculate

  1. the fringe width
  2. the distance of (a) third minimum and (b) fifth maximum, from the central maximum.

Using Young’s double slit experiment, a monochromatic light of wavelength 5000Å produces fringes of fringe width 0.5 mm. If another monochromatic light of wavelength 6000Å is used and the separation between the slits is doubled, then the new fringe width will be ______.


In an interference experiment, a third bright fringe is obtained at a point on the screen with a light of 700 nm. What should be the wavelength of the light source in order to obtain the fifth bright fringe at the same point?


In Young's double slit experiment, show that:

`β = (λ"D")/"d"`

Where the terms have their usual meaning.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×