मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Particle with a Charge of 2.0 × 10−4 C is Placed Directly Below and at a Separation of 10 Cm from the Bob of a Simple Pendulum at Rest. the Mass of the Bob is 100 G. - Physics

Advertisements
Advertisements

प्रश्न

A particle with a charge of 2.0 × 10−4 C is placed directly below and at a separation of 10 cm from the bob of a simple pendulum at rest. The mass of the bob is 100 g. What charge should the bob be given so that the string becomes loose? 

टीपा लिहा

उत्तर

Given:
Mass of the bob, m = 100 g = 0.1 kg
So, tension in the string, T = mg
⇒ T = 0.1 × 9.8 = 0.98 N
For the tension to be zero, the repelling force (Fe) on the bob = T
Magnitude of the charge placed below the bob, q =  2.0 × 10−4 C
Separation between the charges, r = 0.1 m
When the electrostatic force between the bob and the particle is balanced by the tension in the string then the string will become loose.
Let the required charge on the bob be q' .

\[\Rightarrow  F_e  = \frac{1}{4\pi \epsilon_0}\frac{qq'}{r^2} = T\]

\[\Rightarrow \frac{9 \times {10}^9 \times q' \times 2 \times {10}^{- 4}}{{10}^{- 2}} = 0 . 98\] 

\[ \Rightarrow q' = 5 . 4 \times  {10}^{- 9} C\] 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Electric Field and Potential - Exercises [पृष्ठ १२२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 2 [English] Class 11 and 12
पाठ 7 Electric Field and Potential
Exercises | Q 26 | पृष्ठ १२२

संबंधित प्रश्‍न

Four point charges q= 2 μC, q= −5 μC, qC = 2 μC, and qD = −5 μC are located at the corners of a square ABCD of side 10 cm. What is the force on a charge of 1 μC placed at the centre of the square?


Three-point charges q, – 4q and 2q are placed at the vertices of an equilateral triangle ABC of side 'l' as shown in the figure. Obtain the expression for the magnitude of the resultant electric force acting on the charge q

(b) Find out the amount of the work done to separate the charges at infinite distance.


Plot a graph showing the variation of coulomb force (F) versus ,`(1/r^2)` where is the distance between the two charges of each pair of charges: (1 μC, 2 μC) and (2 μC, − 3 μC). Interpret the graphs obtained.


One end of a 10 cm long silk thread is fixed to a large vertical surface of a charged non-conducting plate and the other end is fastened to a small ball of mass 10 g and a charge of 4.0× 10-6 C. In equilibrium, the thread makes an angle of 60° with the vertical. Find the surface charge density on the plate.


Suppose all the electrons of 100 g water are lumped together to form a negatively-charged particle and all the nuclei are lumped together to form a positively-charged particle. If these two particles are placed 10.0 cm away from each other, find the force of attraction between them. Compare it with your weight.


Consider a gold nucleus to be a sphere of radius 6.9 fermi in which protons and neutrons are distributed. Find the force of repulsion between two protons situated at largest separation. Why do these protons not fly apart under this repulsion?


Two insulating small spheres are rubbed against each other and placed 1 cm apart. If they attract each other with a force of 0.1 N, how many electrons were transferred from one sphere to the other during rubbing?


A hydrogen atom contains one proton and one electron. It may be assumed that the electron revolves in a circle of radius 0.53 angstrom (1 angstrom = 10−10 m and is abbreviated as Å ) with the proton at the centre. The hydrogen atom is said to be in the ground state in this case. Find the magnitude of the electric force between the proton and the electron of a hydrogen atom in its ground state.


Find the speed of the electron in the ground state of a hydrogen atom. The description of ground state is given in the previous problem.


Two identical pith balls, each carrying a charge q, are suspended from a common point by two strings of equal length l. Find the mass of each ball if the angle between the strings is 2θ in equilibrium. 


Two particles A and B, each carrying a charge Q, are held fixed with a separation dbetween them. A particle C of mass m and charge q is kept at the middle point of the line AB.  Assuming x<<d, show that this force is proportional to x.


Repeat the previous problem if the particle C is displaced through a distance x along the line AB. 


A water particle of mass 10.0 mg and with a charge of 1.50 × 10−6 C stays suspended in a room. What is the magnitude of electric field in the room? What is its direction ? 


Define a unit charge.


Write down Coulomb’s law in vector form and mention what each term represents.


Polarised dielectric is equivalent to ______.


Identify the wrong statement in the following.

Coulomb's law correctly describes the electric force that ______


Two point charges Q each are placed at a distance d apart. A third point charge q is placed at a distance x from the mid-point on the perpendicular bisector. The value of x at which charge q will experience the maximum Coulomb's force is ______.


Four charges equal to −Q are placed at the four a corners of a square and charge q is at its centre. If the system is in equilibrium, the value of q is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×