Advertisements
Advertisements
प्रश्न
A point P is reflected in the origin. Co-ordinates of its image are (–2, 7). Find the co-ordinates of P.
उत्तर
Since, MO (2, –7) = (–2, 7) So, the co-ordinates of P are (2, –7).
APPEARS IN
संबंधित प्रश्न
State the co-ordinates of the following point under reflection in origin:
(–2, –4)
The point A(4, 6) is first reflected in the origin to point A’. Point A’ is then reflected in the y-axis to the point A”.
- Write down the co-ordinates of A”.
- Write down a single transformation that maps A onto A”.
On a graph paper, plot the triangle ABC, whose vertices are at the points A (3, 1), B (5, 0) and C (7, 4).
On the same diagram, draw the image of the triangle ABC under reflection in the origin O (0, 0).
Point A (4, –1) is reflected as A’ in the y-axis. Point B on reflection in the x-axis is mapped as B’ (–2, 5). Write down the co-ordinates of A’ and B.
The point (–5, 0) on reflection in a line is mapped as (5, 0) and the point (–2, –6) on reflection in the same line is mapped as (2, –6).
- Name the line of reflection.
- Write down the co-ordinates of the image of (5, –8) in the line obtained in (a).
State the co-ordinates of the images of the following point under reflection in the origin:
(2, 7)
State the co-ordinates of the images of the following point under reflection in the origin:
(0, 2)
Find the co-ordinates of the images of the following under reflection in the origin:
(3, -7)
Use graph paper for this question.
The points A (2, 3), B (4, 5) and C (7, 2) are the vertices of A ABC.
- Write down the coordinates of A’, B’, C’ if Δ A’B’C’ is the image of Δ ABC, when reflected in the origin.
- Write down the co-ordinates of A”, B”, C” if A” B” C” is the image of Δ ABC, when reflected in the x-axis.
- Mention the special name of the quadrilateral BCC” B” and find its area.
Use a graph paper for this question (take 10 small divisions = 1 unit on both axis).
Plot the points P (3, 2) and Q (-3, -2), from P and Q draw perpendicular PM and QN on the X- axis.
(i) Name the image of P on reflection at the origin.
(ii) Assign, the. special name to the geometrical figure. PMQN and find its area.
(iii) Write the co-ordinates of the point to which M is mapped on reflection in (i) X- axis,
(ii) Y-axis, (iii) origin.