Advertisements
Advertisements
प्रश्न
A solenoid of length 50 cm of the inner radius of 1 cm and is made up of 500 turns of copper wire for a current of 5 A in it. What will be the magnitude of the magnetic field inside the solenoid?
उत्तर
The magnitude of the magnetic field inside the solenoid,
B = `mu_0"N"/"l""i" = 4pi xx 10^-7 xx 500/0.5 xx 5 = 6.284 xx 10^-3`T
संबंधित प्रश्न
A solenoid of length π m and 5 cm in diameter has winding of 1000 turns and carries a current of 5 A. Calculate the magnetic field at its center along the axis.
What is Solenoid?
A solenoid of length π m and 5 cm in diameter has a winding of 1000 turns and carries a current of 5 A. Calculate the magnetic field at its centre along the radius.
Using Ampere's Law, derive an expression for the magnetic induction inside an ideal solenoid carrying a steady current.
The length of solenoid is I whose windings are made of material of density D and resistivity p. The winding resistance is R. The inductance of solenoid is
[m = mass of winding wire, µ0 = permeability of free space]
A winding wire which is used to frame a solenoid can bear a maximum of 20 A current. If the length of the solenoid is 80 cm and its cross-sectional radius is 3 cm, then the required length of winding wire is ______ (B = 0.2 T)
The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is x. When both the current and radius is doubled then the ratio will be ______.
The magnetic induction along the axis of a toroidal solenoid is independent of ______.
A solenoid of 1.5 m length and 4 cm diameter possesses 20 turns per m. A current of 6 A is flowing through it. The magnetic induction at axis inside the solenoid is ____________.
The space within a current carrying toroid is filled with a m metal of susceptibility 16.5 x 10-6. The percentage increase in the magnetic field B is ____________.
A toroid is a long coil of wire wound over a circular core. If 'r' and 'R' are the radii of the coil and toroid respectively, the coefficient of self-induction of the toroid is (The magnetic field in it is uniform and R > > r) ____________.
(N = number of turns of the coil and µ0 = permeability of free space)
The magnetic flux near the axis and inside the air core solenoid of length 60 cm carrying current 'I' is 1.57 × 10-6 Wb. Its magnetic moment will be ______.
(cross-sectional area is very small as compared to length of solenoid, µ0 = 4π × 10-7 SI unit)
Magnetic field at the centre of a circular loop of area 'A' is 'B'. The magnetic moment of the loop will be (µ0 = permeability of free space) ____________.
A long solenoid carrying current 'I1' produces magnetic field 'B1' along its axis. If the current is reduced to 25% and number of turns per cm are increased four times, then new magnetic field 'B2' is ____________.
A winding wire is used to prepare a solenoid that can bear a maximum current of 10A. If the length of a solenoid is 80 cm and its cross-sectional radius is 3 cm, the required length of winding wire is ____________.
(magnetic field B = 0.2 T, µ0 = 4 x 10-7 SI units)
A long solenoid has 200 turns per cm and carries a current of 2.5 A. The magnetic field at the center is ______. (µ0 = 4π × 10-7 Wb/m-A)
A straight solenoid has 50 turns per cm in primary and 200 turns per cm in the secondary. The area of cross-section of the solenoid is 4 cm2. The mutual inductance is ______.
A conducting rod along the equator is 1 m long and carries a current of 15 A from east to west. The magnitude of Earth's magnetic field at the equator is `4/3 xx 10^(-4)` T. The magnitude and direction of the force on the rod are ______.
For a solenoid and a toroid, the number of turns per unit length is n and the respective interior volume is V. The self inductance is proportional to n2 and V for ______.