मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

A solenoid of length π m and 5 cm in diameter has winding of 1000 turns and carries a current of 5 A. Calculate the magnetic field at its centre along the radius. - Physics

Advertisements
Advertisements

प्रश्न

A solenoid of length π m and 5 cm in diameter has a winding of 1000 turns and carries a current of 5 A. Calculate the magnetic field at its centre along the radius.

संख्यात्मक

उत्तर

Given:

l = π m,

d = 5 cm,

N = 1000 turns,

i = 5 A

We know that,

μ0 = 4π × 107 Tm/A 

To find: Magnetic field (B) = ?

Formulae:

  1. n = `N/l`
  2. B = μ0ni 

Calculation:

From formula (i),

n = `1000/pi "turns"/"m"`

From formula (ii),

B = `4pi xx 10^-7 xx 1000/pi xx 5`

= `20 xx 10^{-7 + 3}`

= 2 × 103

The magnetic field is 2 × 10−3 T. 

shaalaa.com
Magnetic Field of a Solenoid and a Toroid
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Magnetic Effect of Electric Current - Short Answer I

संबंधित प्रश्‍न

A toroid of a central radius of 10 cm has windings of 1000 turns. For a magnetic field of 5 × 10-2 T along its central axis, what current is required to be passed through its windings?


What is Solenoid?


What is Toroid?


A toroid of 4000 turns has an outer radius of 26 cm and an inner radius of 25 cm. If the current in the wire is 10 A. Calculate the magnetic field of the toroid. 


Using Ampere's Law, derive an expression for the magnetic induction inside an ideal solenoid carrying a steady current.


The length of solenoid is I whose windings are made of material of density D and resistivity p. The winding resistance is R. The inductance of solenoid is
[m = mass of winding wire, µ0 = permeability of free space]


A winding wire which is used to frame a solenoid can bear a maximum of 20 A current. If the length of the solenoid is 80 cm and its cross-sectional radius is 3 cm, then the required length of winding wire is ______ (B = 0.2 T)


The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is x. When both the current and radius is doubled then the ratio will be ______.


Two current-carrying coils have radii r and 4r and have same magnetic induction at their centres. The ratio of voltage applied across them is ______.


Two toroids 1 and 2 have total number of turns 400 and 200 respectively with average radii 40 cm and 20 cm respectively. If they carry same current I, the ratio of the magnetic fields along the two loops is, ____________.


A 600 turn coil of effective area 0.05 m2 is kept perpendicular to a magnetic field 4 x 10-5 T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the e.m.f. induced in the coil will be: ____________.


The magnetic induction along the axis of a toroidal solenoid is independent of ______.


The space within a current carrying toroid is filled with a m metal of susceptibility 16.5 x 10-6. The percentage increase in the magnetic field B is ____________.


Magnetic induction due to a toroid does not depend upon ______.


The magnetic flux near the axis and inside the air core solenoid of length 60 cm carrying current 'I' is 1.57 × 10-6 Wb. Its magnetic moment will be ______.

(cross-sectional area is very small as compared to length of solenoid, µ0 = 4π × 10-7 SI unit)


Magnetic field at the centre of a circular loop of area 'A' is 'B'. The magnetic moment of the loop will be (µ0 = permeability of free space) ____________.


A long solenoid carrying current 'I1' produces magnetic field 'B1' along its axis. If the current is reduced to 25% and number of turns per cm are increased four times, then new magnetic field 'B2' is ____________.


A winding wire is used to prepare a solenoid that can bear a maximum current of 10A. If the length of a solenoid is 80 cm and its cross-sectional radius is 3 cm, the required length of winding wire is ____________.

(magnetic field B = 0.2 T, µ0 = 4 x 10-7 SI units)


A charged particle carrying a charge 'q' and moving with velocity V, enters into a solenoid carrying a current T, along its axis. If 'B' is the magnetic induction along the axis of a solenoid, then the force 'F' acting on the charged particle will be ____________.


A straight solenoid has 50 turns per cm in primary and 200 turns per cm in the secondary. The area of cross-section of the solenoid is 4 cm2. The mutual inductance is ______.


Obtain an expression for magnetic induction of a toroid of ‘N’ turns about an axis passing through its centre and perpendicular to its plane.


A conducting rod along the equator is 1 m long and carries a current of 15 A from east to west. The magnitude of Earth's magnetic field at the equator is `4/3 xx 10^(-4)` T. The magnitude and direction of the force on the rod are ______.


A current carrying toroid winding is internally filled with lithium having susceptibility `chi` = 2.1 × 10−5. What is the percentage increase in the magnetic field in the presence of lithium over that without it?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×