मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

A toroid of 4000 turns has an outer radius of 26 cm and an inner radius of 25 cm. If the current in the wire is 10 A. Calculate the magnetic field of the toroid. - Physics

Advertisements
Advertisements

प्रश्न

A toroid of 4000 turns has an outer radius of 26 cm and an inner radius of 25 cm. If the current in the wire is 10 A. Calculate the magnetic field of the toroid. 

संख्यात्मक

उत्तर

Given:

R1 = 0.25 m;

R2 = 0.26 m;

N = 4000;

i = 10 A

To find: Magnetic field of the toroid (B)

Formula:

B = `mu_0 xx N/l xx i`

where l = mean length of toroid = `2pi((R_1 + R"_2))/2`

Calculation:

From formula,

l = π (R1 + R2)

= π (0.25 + 0.26)

= π × 0.51 m

∴ B = `((4pi xx 10^-7) xx 4000 xx 10)/(pi xx 0.51)`

= `16/0.51 xx 10^-3`

∴ Bin = 3.137 × 10−2 T

The magnetic field of the toroid is 3.137 × 102 T.

shaalaa.com
Magnetic Field of a Solenoid and a Toroid
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Magnetic Effect of Electric Current - Short Answer I

APPEARS IN

एससीईआरटी महाराष्ट्र Physics [English] 12 Standard HSC
पाठ 10 Magnetic Effect of Electric Current
Short Answer I | Q 1

संबंधित प्रश्‍न

What is Toroid?


A solenoid of length 50 cm of the inner radius of 1 cm and is made up of 500 turns of copper wire for a current of 5 A in it. What will be the magnitude of the magnetic field inside the solenoid? 


A solenoid of length π m and 5 cm in diameter has a winding of 1000 turns and carries a current of 5 A. Calculate the magnetic field at its centre along the radius.


The length of solenoid is I whose windings are made of material of density D and resistivity p. The winding resistance is R. The inductance of solenoid is
[m = mass of winding wire, µ0 = permeability of free space]


A toroid has a core (non-ferromagnetic) of inner radius 25 cm and outer radius 26 cm, around which 2,000 turns of a wire are wound. If the current in the wire is 10 A, the magnetic field inside the core of the toroid will be ______


The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is x. When both the current and radius is doubled then the ratio will be ______.


Two current-carrying coils have radii r and 4r and have same magnetic induction at their centres. The ratio of voltage applied across them is ______.


Two toroids 1 and 2 have total number of turns 400 and 200 respectively with average radii 40 cm and 20 cm respectively. If they carry same current I, the ratio of the magnetic fields along the two loops is, ____________.


A 600 turn coil of effective area 0.05 m2 is kept perpendicular to a magnetic field 4 x 10-5 T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the e.m.f. induced in the coil will be: ____________.


The magnetic induction along the axis of a toroidal solenoid is independent of ______.


A solenoid of 1.5 m length and 4 cm diameter possesses 20 turns per m. A current of 6 A is flowing through it. The magnetic induction at axis inside the solenoid is ____________.


A proton is projected with a uniform velocity 'v' along the axis of a current carrying solenoid, then ____________.


The space within a current carrying toroid is filled with a m metal of susceptibility 16.5 x 10-6. The percentage increase in the magnetic field B is ____________.


The magnetic flux near the axis and inside the air core solenoid of length 60 cm carrying current 'I' is 1.57 × 10-6 Wb. Its magnetic moment will be ______.

(cross-sectional area is very small as compared to length of solenoid, µ0 = 4π × 10-7 SI unit)


A long solenoid carrying current 'I1' produces magnetic field 'B1' along its axis. If the current is reduced to 25% and number of turns per cm are increased four times, then new magnetic field 'B2' is ____________.


A winding wire is used to prepare a solenoid that can bear a maximum current of 10A. If the length of a solenoid is 80 cm and its cross-sectional radius is 3 cm, the required length of winding wire is ____________.

(magnetic field B = 0.2 T, µ0 = 4 x 10-7 SI units)


A charged particle carrying a charge 'q' and moving with velocity V, enters into a solenoid carrying a current T, along its axis. If 'B' is the magnetic induction along the axis of a solenoid, then the force 'F' acting on the charged particle will be ____________.


A toroid has a core of inner radius 20 cm and outer radius 22 cm around which 4200 turns of a wire are wound. If the current in the wire is 10 A. What is the magnetic field inside the core of toroid?


In a current-carrying long solenoid, the field produced does not depend upon ______


A long solenoid has 200 turns per cm and carries a current of 2.5 A. The magnetic field at the center is ______. (µ0 = 4π × 10-7 Wb/m-A)


A straight solenoid has 50 turns per cm in primary and 200 turns per cm in the secondary. The area of cross-section of the solenoid is 4 cm2. The mutual inductance is ______.


Obtain an expression for magnetic induction of a toroid of ‘N’ turns about an axis passing through its centre and perpendicular to its plane.


For a solenoid and a toroid, the number of turns per unit length is n and the respective interior volume is V. The self inductance is proportional to n2 and V for ______.


A current of 10 A passes through a coil having 5 turns and produces magnetic field at the centre of the coil having magnitude 0.5 x 10-4 T. Calculate diameter of the coil.

0 = 4π x 10-7 Wb/Am)  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×