Advertisements
Advertisements
प्रश्न
What is Toroid?
उत्तर
A toroid is a solenoid of finite length bent into a hollow circular tube.
APPEARS IN
संबंधित प्रश्न
A toroid of a central radius of 10 cm has windings of 1000 turns. For a magnetic field of 5 × 10-2 T along its central axis, what current is required to be passed through its windings?
A solenoid of length 50 cm of the inner radius of 1 cm and is made up of 500 turns of copper wire for a current of 5 A in it. What will be the magnitude of the magnetic field inside the solenoid?
A toroid of 4000 turns has an outer radius of 26 cm and an inner radius of 25 cm. If the current in the wire is 10 A. Calculate the magnetic field of the toroid.
Using Ampere's Law, derive an expression for the magnetic induction inside an ideal solenoid carrying a steady current.
The length of solenoid is I whose windings are made of material of density D and resistivity p. The winding resistance is R. The inductance of solenoid is
[m = mass of winding wire, µ0 = permeability of free space]
A winding wire which is used to frame a solenoid can bear a maximum of 20 A current. If the length of the solenoid is 80 cm and its cross-sectional radius is 3 cm, then the required length of winding wire is ______ (B = 0.2 T)
The ratio of magnetic field and magnetic moment at the centre of a current carrying circular loop is x. When both the current and radius is doubled then the ratio will be ______.
A 600 turn coil of effective area 0.05 m2 is kept perpendicular to a magnetic field 4 x 10-5 T. When the plane of the coil is rotated by 90° around any of its coplanar axis in 0.1 s, the e.m.f. induced in the coil will be: ____________.
A solenoid of 1.5 m length and 4 cm diameter possesses 20 turns per m. A current of 6 A is flowing through it. The magnetic induction at axis inside the solenoid is ____________.
A proton is projected with a uniform velocity 'v' along the axis of a current carrying solenoid, then ____________.
The space within a current carrying toroid is filled with a m metal of susceptibility 16.5 x 10-6. The percentage increase in the magnetic field B is ____________.
A toroid is a long coil of wire wound over a circular core. If 'r' and 'R' are the radii of the coil and toroid respectively, the coefficient of self-induction of the toroid is (The magnetic field in it is uniform and R > > r) ____________.
(N = number of turns of the coil and µ0 = permeability of free space)
The magnetic flux near the axis and inside the air core solenoid of length 60 cm carrying current 'I' is 1.57 × 10-6 Wb. Its magnetic moment will be ______.
(cross-sectional area is very small as compared to length of solenoid, µ0 = 4π × 10-7 SI unit)
Magnetic field at the centre of a circular loop of area 'A' is 'B'. The magnetic moment of the loop will be (µ0 = permeability of free space) ____________.
A winding wire is used to prepare a solenoid that can bear a maximum current of 10A. If the length of a solenoid is 80 cm and its cross-sectional radius is 3 cm, the required length of winding wire is ____________.
(magnetic field B = 0.2 T, µ0 = 4 x 10-7 SI units)
A charged particle carrying a charge 'q' and moving with velocity V, enters into a solenoid carrying a current T, along its axis. If 'B' is the magnetic induction along the axis of a solenoid, then the force 'F' acting on the charged particle will be ____________.
A toroid has a core of inner radius 20 cm and outer radius 22 cm around which 4200 turns of a wire are wound. If the current in the wire is 10 A. What is the magnetic field inside the core of toroid?
In a current-carrying long solenoid, the field produced does not depend upon ______
A long solenoid has 200 turns per cm and carries a current of 2.5 A. The magnetic field at the center is ______. (µ0 = 4π × 10-7 Wb/m-A)
Obtain an expression for magnetic induction of a toroid of ‘N’ turns about an axis passing through its centre and perpendicular to its plane.
A conducting rod along the equator is 1 m long and carries a current of 15 A from east to west. The magnitude of Earth's magnetic field at the equator is `4/3 xx 10^(-4)` T. The magnitude and direction of the force on the rod are ______.
A current of 10 A passes through a coil having 5 turns and produces magnetic field at the centre of the coil having magnitude 0.5 x 10-4 T. Calculate diameter of the coil.
(µ0 = 4π x 10-7 Wb/Am)