Advertisements
Advertisements
प्रश्न
A solid sphere of mass 0⋅50 kg is kept on a horizontal surface. The coefficient of static friction between the surfaces in contact is 2/7. What maximum force can be applied at the highest point in the horizontal direction so that the sphere does not slip on the surface?
उत्तर
Let α be the angular acceleration produced in the sphere.
Rotational equation of motion,
\[F \times R - f_r \times R = I\alpha\]
\[\Rightarrow F = \frac{2}{5}mR\alpha + \mu mg........(1)\]
Translational equation of motion,
\[F = ma - \mu mg\]
\[ \Rightarrow a = \frac{\left( F + \mu mg \right)}{m}\]
For pure rolling, we have
\[\alpha = \frac{a}{R}\]
\[\Rightarrow \alpha = \frac{\left( F + \mu mg \right)}{mR}\]
Putting the value of \[\alpha\] in equation (1), we get
\[F = \frac{2}{5}\frac{mR\left( F + \mu mg \right)}{mR} + \mu mg\]
\[ \Rightarrow F = \frac{2}{5}\left( F + \mu mg \right) \mu mg\]
\[ \Rightarrow F = \frac{2}{5}F + \left( \frac{2}{5} \times \frac{2}{7} \times 0 . 5 \times 10 \right) + \left( \frac{2}{7} \times 0 . 5 \times 10 \right)\]
\[ \Rightarrow \frac{3F}{5} = \frac{4}{7} + \frac{10}{7} = 2\]
\[ \Rightarrow F = \frac{5 \times 2}{3} = \frac{10}{3} = 3 . 3 N\]
APPEARS IN
संबंधित प्रश्न
Derive an expression for kinetic energy, when a rigid body is rolling on a horizontal surface without slipping. Hence find kinetic energy for a solid sphere.
Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined plane of a height h is given by `v^2 = (2gh)/((1+k^2"/"R^2))`.
Using dynamical consideration (i.e. by consideration of forces and torques). Note k is the radius of gyration of the body about its symmetry axis, and R is the radius of the body. The body starts from rest at the top of the plane.
Read each statement below carefully, and state, with reasons, if it is true or false;
The instantaneous speed of the point of contact during rolling is zero.
Read each statement below carefully, and state, with reasons, if it is true or false;
For perfect rolling motion, work done against friction is zero.
If a rigid body of radius ‘R’ starts from rest and rolls down an inclined plane of inclination
‘θ’ then linear acceleration of body rolling down the plane is _______.
A stone of mass 2 kg is whirled in a horizontal circle attached at the end of 1.5m long string. If the string makes an angle of 30° with vertical, compute its period. (g = 9.8 m/s2)
The following figure shows a smooth inclined plane fixed in a car accelerating on a horizontal road. The angle of incline θ is related to the acceleration a of the car as a = g tanθ. If the sphere is set in pure rolling on the incline, _____________.
A string is wrapped over the edge of a uniform disc and the free end is fixed with the ceiling. The disc moves down, unwinding the string. Find the downward acceleration of the disc.
A disc of the moment of inertia Ia is rotating in a horizontal plane about its symmetry axis with a constant angular speed ω. Another disc initially at rest of moment of inertia Ib is dropped coaxially onto the rotating disc. Then, both the discs rotate with the same constant angular speed. The loss of kinetic energy due to friction in this process is, ______
What is the condition for pure rolling?
What is the difference between sliding and slipping?
A uniform disc of mass 100g has a diameter of 10 cm. Calculate the total energy of the disc when rolling along with a horizontal table with a velocity of 20 cms-1. (take the surface of the table as reference)
A solid sphere rolls down from top of inclined plane, 7m high, without slipping. Its linear speed at the foot of plane is ______. (g = 10 m/s2)
A solid sphere of mass 1 kg and radius 10 cm rolls without slipping on a horizontal surface, with velocity of 10 emfs. The total kinetic energy of sphere is ______.
An object is rolling without slipping on a horizontal surface and its rotational kinetic energy is two-thirds of translational kinetic energy. The body is ______.
A solid spherical ball rolls on an inclined plane without slipping. The ratio of rotational energy and total energy is ______.
A uniform disc of radius R, is resting on a table on its rim.The coefficient of friction between disc and table is µ (Figure). Now the disc is pulled with a force F as shown in the figure. What is the maximum value of F for which the disc rolls without slipping?
A solid sphere of mass 2 kg is rolling on a frictionless horizontal surface with velocity 6m/s. It collides on the free end of an ideal spring whose other end is fixed. The maximum compression produced in the spring will be ______.
(Force constant of the spring = 36 N/m)