मराठी

Prove the Result that the Velocity V of Translation of a Rolling Body (Like a Ring, Disc, Cylinder Or Sphere) at the Bottom of an Inclined Plane of a Height H is Given by V2 Using Dynamical Consideration (I.E. by Consideration of Forces and Torques). Note K is the Radius of Gyration of the Body About Its Symmetry Axis, and R is the Radius of the Body - Physics

Advertisements
Advertisements

प्रश्न

Prove the result that the velocity v of translation of a rolling body (like a ring, disc, cylinder or sphere) at the bottom of an inclined plane of a height h is given by `v^2 = (2gh)/((1+k^2"/"R^2))`.

Using dynamical consideration (i.e. by consideration of forces and torques). Note is the radius of gyration of the body about its symmetry axis, and R is the radius of the body. The body starts from rest at the top of the plane.

उत्तर १

A body rolling on an inclined plane of height h is shown in the following figure:

m = Mass of the body

= Radius of the body

K = Radius of gyration of the body

= Translational velocity of the body

=Height of the inclined plane

g = Acceleration due to gravity

Total energy at the top of the plane, E­1= mgh

Total energy at the bottom of the plane, `E_b = KE_rot + KE_trans`

`=1/2 Iomega^2 + 1/2 mv^2`

But `I = mk^2 " and " omega = v/r`

`:.E_b = 1/2 (mk^2)(v^2/R_2) + 1/2 mv^2`

`=1/2 mv^2 k^2/R^2 + 1/2mv^2`

`= 1/2 mv^2(1+ k^2/R^2)`

From the law of conservation of energy, we have:

`E_T = E_b`

`mgh = 1/2mv^2(1+k^2/R^2)`

`:.v = (2gh)/(1+k^2"/"R^2)`

Hence, the given result is proved.

shaalaa.com

उत्तर २

Let a rolling body (I = Mk2) rolls down an inclined plane with an initial velocity u = 0; When it reaches the bottom of the inclined plane, let its linear velocity be v. Then from conservation of mechanical energy, we have Loss in P.E. = Gain in translational K.E. + Gain in rotational K.E.

`Mgh = 1/2mv^2 + 1/2 Iomega^2`

`= 1/2mv^2 + 1/2(mk^2)(v^2/R^2)`

`Mgh = 1/2mv^2 (1+k^2/R^2)`

`v^2 = (2gh)/(1+k^2/R^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: System of Particles and Rotational Motion - Exercises [पृष्ठ १८०]

APPEARS IN

एनसीईआरटी Physics [English] Class 11
पाठ 7 System of Particles and Rotational Motion
Exercises | Q 27 | पृष्ठ १८०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Derive an expression for kinetic energy, when a rigid body is rolling on a horizontal surface without slipping. Hence find kinetic energy for a solid sphere.


If a rigid body of radius ‘R’ starts from rest and rolls down an inclined plane of inclination
‘θ’ then linear acceleration of body rolling down the plane is _______.


Two uniform solid spheres having unequal masses and unequal radii are released from rest from the same height on a rough incline. If the spheres roll without slipping, ___________ .


Answer in Brief:

A rigid object is rolling down an inclined plane derive the expression for the acceleration along the track and the speed after falling through a certain vertical distance.


A pendulum consisting of a massless string of length 20 cm and a tiny bob of mass 100 g is set up as a conical pendulum. Its bob now performs 75 rpm. Calculate kinetic energy and increase in the gravitational potential energy of the bob. (Use π2 = 10)


The angular velocity of minute hand of a clock in degree per second is ______.


A 1000 kg car has four 10 kg wheels. When the car is moving, fraction of total K.E. of the car due to rotation of the wheels about their axles is nearly (Assume wheels be uniform disc)


If x = at + bt2, where x is the distance travelled by the body in kilometers while t is the time in seconds, then the unit of b is ______.


A solid sphere of mass 2 kg is rolling on a frictionless horizontal surface with velocity 6m/s. It collides on the free end of an ideal spring whose other end is fixed. The maximum compression produced in the spring will be ______.

(Force constant of the spring = 36 N/m)


A disc of mass 4 kg rolls on a horizontal surface. If its linear speed is 3 m/ s, what is its total kinetic energy?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×