Advertisements
Advertisements
प्रश्न
A student noted the number of cars passing through a spot on a road for 100 periods each of 3 minutes and summarised it in the table given below. Find the mode of the data.
Number of cars | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 | 50 − 60 | 60 − 70 | 70 − 80 |
Frequency | 7 | 14 | 13 | 12 | 20 | 11 | 15 | 8 |
उत्तर
From the given data, it can be observed that the maximum class frequency is 20, belonging to 40 − 50 class intervals.
Therefore, modal class = 40 − 50
Lower limit (l) of modal class = 40
Frequency (f1) of modal class = 20
Frequency (f0) of class preceding modal class = 12
Frequency (f2) of class succeeding modal class = 11
Class size = 10
`"Mode" = l + ((f_1-f_0)/(2f_1-f_0-f_2))xxh`
= `40+[(20-12)/(2(20)-12-11)]xx10`
= `40+((80)/(40-23))`
= 40 + 4.7
= 44.7
Therefore, the mode of this data is 44.7 cars.
संबंधित प्रश्न
The given distribution shows the number of runs scored by some top batsmen of the world in one-day international cricket matches.
Runs scored | Number of batsmen |
3000 − 4000 | 4 |
4000 − 5000 | 18 |
5000 − 6000 | 9 |
6000 − 7000 | 7 |
7000 − 8000 | 6 |
8000 − 9000 | 3 |
9000 − 10000 | 1 |
10000 − 11000 | 1 |
Find the mode of the data.
Find the mode of the following distribution.
Class-interval: | 10 - 15 | 15 - 20 | 20 - 25 | 25 - 30 | 30 - 35 | 35 - 40 |
Frequency: | 30 | 45 | 75 | 35 | 25 | 15 |
Find the mode of the following distribution:
Marks | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 | 50 – 60 |
Frequency | 12 | 35 | 45 | 25 | 13 |
Compute the mode of the following data:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 |
Frequency | 25 | 16 | 28 | 20 | 5 |
Compute the mode from the following data:
Class interval | 1 – 5 | 6 – 10 | 11 – 15 | 16 – 20 | 21 – 25 | 26 – 30 | 31 – 35 | 36 – 40 | 41 – 45 | 46 – 50 |
Frequency | 3 | 8 | 13 | 18 | 28 | 20 | 13 | 8 | 6 | 4 |
The agewise participation of students in the annual function of a school is shown in the following distribution.
Age (in years) | 5 - 7 | 7 - 9 | 9 - 11 | 11 – 13 | 13 – 15 | 15 – 17 | 17 – 19 |
Number of students | x | 15 | 18 | 30 | 50 | 48 | x |
Find the missing frequencies when the sum of frequencies is 181. Also find the mode of the data.
If the mode of the data: 16, 15, 17, 16, 15, x, 19, 17, 14 is 15, then x =
A study of the yield of 150 tomato plants, resulted in the record:
Tomatoes per Plant | 1 - 5 | 6 - 10 | 11 - 15 | 16 - 20 | 21 - 25 |
Number of Plants | 20 | 50 | 46 | 22 | 12 |
Name the modal class.
The monthly salary of 10 employees in a factory are given below:
₹ 5000, ₹ 7000, ₹ 5000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 7000, ₹ 8000, ₹ 7000, ₹ 5000
Find the mean, median and mode
For the data 11, 15, 17, x + 1, 19, x – 2, 3 if the mean is 14, find the value of x. Also find the mode of the data
Find the mode of the following data:
Marks | 0 − 10 | 10 − 20 | 20 − 30 | 30 − 40 | 40 − 50 |
Number of students | 22 | 38 | 46 | 34 | 20 |
Mode is the ______.
Find the mode of the following data.
Class interval | 0 - 10 | 10 - 20 | 20 - 30 | 30 - 40 | 40 - 50 |
Frequency | 7 | 13 | 14 | 5 | 11 |
Which of the following is not a measure of central tendency?
For the following distribution:
Marks | Number of students |
Below 10 | 3 |
Below 20 | 12 |
Below 30 | 27 |
Below 40 | 57 |
Below 50 | 75 |
Below 60 | 80 |
The modal class is ______.
If L = 10, f1 = 70, f0 = 58, f2 = 42, h = 2, then find the mode by using formula.
The mode of the numbers 2, 3, 3, 4, 5, 4, 4, 5, 3, 4, 2, 6, 7 is ______.