Advertisements
Advertisements
प्रश्न
A system X is neither in thermal equilibrium with Y nor with Z. The systems Y and Z
पर्याय
must be in thermal equilibrium
cannot be in thermal equilibrium
may be in thermal equilibrium
उत्तर
may be in thermal equilibrium
The given data in the question is insufficient to specify the relation between the physical conditions of systems Y and Z. As system X is not in thermal equilibrium with Y and Z, systems Y and Z may be at the same temperature or they may or may not be in thermal equilibrium with each other. So, the only possible option is (c).
APPEARS IN
संबंधित प्रश्न
A brass rod of length 50 cm and diameter 3.0 mm is joined to a steel rod of the same length and diameter. What is the change in length of the combined rod at 250 °C, if the original lengths are at 40.0 °C? Is there a ‘thermal stress’ developed at the junction? The ends of the rod are free to expand (Co-efficient of linear expansion of brass = 2.0 × 10–5 K–1, steel = 1.2 × 10–5 K–1).
The coefficient of volume expansion of glycerin is 49 × 10–5 K–1. What is the fractional change in its density for a 30 °C rise in temperature?
If mercury and glass had equal coefficients of volume expansion, could we make a mercury thermometer in a glass tube?
Is it possible for two bodies to be in thermal equilibrium if they are not in contact?
For a constant-volume gas thermometer, one should fill the gas at
A gas thermometer measures the temperature from the variation of pressure of a sample of gas. If the pressure measured at the melting point of lead is 2.20 times the pressure measured at the triple point of water, find the melting point of lead.
Show that the moment of inertia of a solid body of any shape changes with temperature as I = I0 (1 + 2αθ), where I0 is the moment of inertia at 0°C and α is the coefficient of linear expansion of the solid.
Answer the following question.
Give an example of the disadvantages of thermal stress in practical use?
A glass flask has a volume 1 × 10−4 m3. It is filled with a liquid at 30°C. If the temperature of the system is raised to 100°C, how much of the liquid will overflow? (Coefficient of volume expansion of glass is 1.2 × 10−5 (°C)−1 while that of the liquid is 75 × 10−5 (°C)−1).
A hot body at a temperature 'T' is kept in a surrounding of temperature 'T0'. It takes time 't1' to cool from 'T' to 'T2', time t2 to cool from 'T2' to 'T3' and time 't3' to cool from 'T3' to 'T4'. If (T - T2) = (T2 - T3) = (T3 - T4), then ______.
The volume of a metal block changes by 0.86% when heated through 200 °C then its coefficient of cubical expansion is ______.
A uniform metallic rod rotates about its perpendicular bisector with constant angular speed. If it is heated uniformly to raise its temperature slightly ______.
As the temperature is increased, the time period of a pendulum ______.
A student records the initial length l, change in temperature ∆T and change in length ∆l of a rod as follows:
S.No. | l(m) | ∆T (C) | ∆l (m) |
1. | 2 | 10 | `4 xx 10^-4` |
2. | 1 | 10 | `4 xx 10^-4` |
3. | 2 | 20 | `2 xx 10^-4` |
4. | 3 | 10 | `6 xx 10^-4` |
If the first observation is correct, what can you say about observations 2, 3 and 4.
If the length of a cylinder on heating increases by 2%, the area of its base will increase by ______.
The height of mercury column measured with brass scale at temperature T0 is H0. What height H' will the mercury column have at T = 0°C. Coefficient of volume expansion of mercury is γ. Coefficient of linear expansion of brass is α ______.
An anisotropic material has coefficient of linear thermal expansion α1, α2 and α3 along x, y and z-axis respectively. Coefficient of cubical expansion of its material will be equal to ______.
A clock with an iron pendulum keeps the correct time at 15°C. If the room temperature is 20°C, the error in seconds per day will be near ______.
(coefficient of linear expansion of iron is 1.2 × 10-5/°C)
A metal rod Y = 2 × 1012 dyne cm-2 of coefficient of linear expansion 1.6 × 10-5 per °C has its temperature raised by 20°C. The linear compressive stress to prevent the expansion of the rod is ______.