Advertisements
Advertisements
प्रश्न
A teacher wanted to analyse the performance of two sections of students in a mathematics test of 100 marks. Looking at their performances, she found that a few students got under 20 marks and a few got 70 marks or above. So she decided to group them into intervals of varying sizes as follows: 0 − 20, 20 − 30… 60 − 70, 70 − 100. Then she formed the following table:-
Marks | Number of students |
0 - 20 | 7 |
20 - 30 | 10 |
30 - 40 | 10 |
40 - 50 | 20 |
50 - 60 | 20 |
60 - 70 | 15 |
70 - above | 8 |
Total 90 |
(i) Find the probability that a student obtained less than 20 % in the mathematics test.
(ii) Find the probability that a student obtained marks 60 or above.
उत्तर
Totalnumber of students = 90
(i) Number of students getting less than 20 % marks in the test = 7
Hence, required probability, P = 7/90
(ii) Number of students obtaining marks 60 or above = 15 + 8 = 23
Hence, required probability, P = 23/90
APPEARS IN
संबंधित प्रश्न
1500 families with 2 children were selected randomly and the following data were recorded:
Number of girls in a family | 0 | 1 | 2 |
Number of families | 211 | 814 | 475 |
(i) No girl
(ii) 1 girl
(iii) 2 girls
(iv) at most one girl
(v) more girls than boys
Following table shows the birth month of 40 students of class IX.
Jan | Feb | March | April | May | June | July | Aug | Sept | Oct | Nov | Dec |
3 | 4 | 2 | 2 | 5 | 1 | 2 | 5 | 3 | 4 | 4 | 4 |
The following table gives the life time of 400 neon lamps:
Life time (in hours) |
300-400 | 400-500 | 500-600 | 600-700 | 700-800 | 800-900 | 900-1000 |
Number of lamps: | 14 | 56 | 60 | 86 | 74 | 62 | 48 |
A bulb is selected of random, Find the probability that the the life time of the selected bulb is:
(i) less than 400
(ii) between 300 to 800 hours
(iii) at least 700 hours.
A big contains 4 white balls and some red balls. If the probability of drawing a white ball from the bag is `2/5`, find the number of red balls in the bag.
The probability of a certain event is
Bulbs are packed in cartons each containing 40 bulbs. Seven hundred cartons were examined for defective bulbs and the results are given in the following table:
Number of defective bulbs | 0 | 1 | 2 | 3 | 4 | 5 | 6 | more than 6 |
Frequency | 400 | 180 | 48 | 41 | 18 | 8 | 3 | 2 |
One carton was selected at random. What is the probability that it has
- no defective bulb?
- defective bulbs from 2 to 6?
- defective bulbs less than 4?
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have
- no defective part
- atleast one defective part
- not more than 5 defective parts
- more than 13 defective parts
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have not more than 5 defective parts
Over the past 200 working days, the number of defective parts produced by a machine is given in the following table:
Number of defective parts |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Days | 50 | 32 | 22 | 18 | 12 | 12 | 10 | 10 | 10 | 8 | 6 | 6 | 2 | 2 |
Determine the probability that tomorrow’s output will have more than 13 defective parts
A recent survey found that the ages of workers in a factory is distributed as follows:
Age (in years) | 20 – 29 | 30 – 39 | 40 – 49 | 50 – 59 | 60 and above |
Number of workers | 38 | 27 | 86 | 46 | 3 |
If a person is selected at random, find the probability that the person is under 40 years