मराठी

A Two-digit Number is 4 Times the Sum of Its Digits. If 18 is Added to the Number, the Digits Are Reversed. Find the Number. - Mathematics

Advertisements
Advertisements

प्रश्न

A two-digit number is 4 times the sum of its digits. If 18 is added to the number, the digits are reversed. Find the number.

व्याख्या

उत्तर

Let the digits at units and tens place of the given number be x and y respectively. Thus, the number is  ` 10 y + x`.

The number is 4 times the sum of the two digits. Thus, we have

` 10 y + x = 4 ( x + y)`

` ⇒ 10 y + x = 4x + 4 y `

`⇒ 4 x + 4 y - 10 y - x = 0 `

`⇒ 3 x - 6 y = 0 `

`⇒ 3( x - 2y)= 0`

` ⇒ x - 2y =0`

After interchanging the digits, the number becomes `10x + y .`.

If 18 is added to the number, the digits are reversed. Thus, we have

`(10 y + x )+ 18 =10x + y`

`⇒ 10 x + y -10y -x =18`

` ⇒ 9x -9y =18`

` ⇒ 9(x -y) = 18`

` ⇒ x - y= 18/9`

`⇒ x - y = 2`

So, we have the systems of equations

`x - 2y = 0`

`x - y = 2 `

Here x and y are unknowns. We have to solve the above systems of equations for xand y.

Subtracting the first equation from the second, we have

`( x - y)-(x - 2y)=2-0`

`⇒ x - y-x+2y=2 `

` ⇒ y = 2`

Substituting the value of in the first equation, we have

` x - 2 xx2=0`

` ⇒ x - 4 =0`

` ⇒ x = 4`

Hence, the number is ` 10 xx2 + 4 = 24`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Pair of Linear Equations in Two Variables - Exercise 3.7 [पृष्ठ ८६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 3 Pair of Linear Equations in Two Variables
Exercise 3.7 | Q 8 | पृष्ठ ८६
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×