Advertisements
Advertisements
प्रश्न
A unit vector \[\vec{a}\] makes angles \[\frac{\pi}{4}\text{ and }\frac{\pi}{3}\] with \[\hat{i}\] and \[\hat{j}\] respectively and an acute angle θ with \[\hat{k}\] . Find the angle θ and components of \[\vec{a}\] .
उत्तर
\[\text{ Let }\vec{a} = a_1 \hat{i} {} + a_2 \hat{j} {+a}_3 \hat{k} , \text{ where } a_1 , a_2 \text{ and } a_3 \text{ are components of } \vec{a} .\]
\[ \Rightarrow {a_1}^2 + {a_2}^2 + {a_3}^2 = 1............... ( \text{ Because }\vec{a} \text{ is a unit vector }) . . . \left( 1 \right)\]
\[\text{ Now },\]
\[ \vec{a} . \text{i} = a_1 \]
\[ \Rightarrow \left| \vec{a} \right|\left| \hat{i} \right| \cos \frac{\pi}{4} = a_1 (\text{ Because the angle between } \vec{a} \text{ and } \hat{i} \text{ is }\frac{\pi}{4})\]
\[ \Rightarrow \left( 1 \right) \left( 1 \right) \frac{1}{\sqrt{2}} = a_1 ...........(\text{ Because } \vec{a} \text{ and } \hat{i} \text{ are unit vectors })\]
\[ \Rightarrow a_1 = \frac{1}{\sqrt{2}}\]
\[\text{ Again },\]
\[ \vec{a} . \hat{j} = a_2 \]
\[ \Rightarrow \left| \vec{a} \right|\left| \hat{i} \right| \cos \frac{\pi}{3} = a_2........... (\text{ Because the angle between } \vec{a} \text{ and } \hat{i} \text{ is }\frac{\pi}{3})\]
\[ \Rightarrow \left( 1 \right) \left( 1 \right) \frac{1}{2} = a_2 ...........(\text{ Because } \vec{a} \text{ and } \hat{i} \text{ are unit vectors })\]
\[ \Rightarrow a_2 = \frac{1}{2}\]
\[\text{ Now from } (1),\]
\[ \left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{2} \right)^2 + {a_3}^2 = 1\]
\[ \Rightarrow \frac{1}{2} + \frac{1}{4} + {a_3}^2 = 1\]
\[ \Rightarrow \frac{3}{4} + {a_3}^2 = 1\]
\[ \Rightarrow {a_3}^2 = \frac{1}{4}\]
\[ \Rightarrow a_3 = \frac{1}{2}\]
\[\text{ Now },\]
\[ \vec{a} . \hat{k} = a_3 \]
\[ \Rightarrow \left| \vec{a} \right|\left| \hat{k} \right| \cos \theta = \frac{1}{2}.......... (\text{ Because the angle between } \vec{a} \text{ and } \hat{k} \text{ is }\theta)\]
\[ \Rightarrow \left( 1 \right) \left( 1 \right) \cos \theta = \frac{1}{2}..........(\text{ Because } \vec{a} \text{ and } \hat{i} \hat{\text{ are unit }}vectors)\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{3}\]
\[\text{ And } \]
\[ \vec{a} =\frac{1}{\sqrt{2}}\hat{i} {} + \frac{1}{2} \hat{j} + \frac{1}{2} \hat{k} \]
APPEARS IN
संबंधित प्रश्न
Compute the magnitude of the following vector:
`veca = hati + hatj + hatk;` `vecb = 2hati - 7hatj - 3hatk`; `vecc = 1/sqrt3 hati + 1/sqrt3 hatj - 1/sqrt3 hatk`
Write two different vectors having same direction.
If θ is the angle between any two vectors `veca` and `vecb,` then `|veca.vecb| = |veca xx vecb|` when θ is equal to ______.
Find the projection of \[\vec{b} + \vec{c} \text { on }\vec{a}\] where \[\vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]
If \[\vec{a} = 5 \hat{i} - \hat{j} - 3 \hat{k} \text{ and } \vec{b} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then show that the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} \] are orthogonal.
If two vectors \[\vec{a} \text{ and } \vec{b}\] are such that \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 1 \text{ and } \vec{a} \cdot \vec{b} = 1,\] then find the value of \[\left( 3 \vec{a} - 5 \vec{b} \right) \cdot \left( 2 \vec{a} + 7 \vec{b} \right) .\]
If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\] in each of the following.
\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 8\]
If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\] in each of the following.
\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 12\]
Find \[\left| \vec{a} \right| and \left| \vec{b} \right|\] if
\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 3\text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]
Find \[\left| \vec{a} - \vec{b} \right|\] if
\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 5 \text{ and } \vec{a} \cdot \vec{b} = 8\]
Find \[\left| \vec{a} - \vec{b} \right|\] if
\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 4\]
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] if
\[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = 2 \text{ and } \vec{a} \cdot \vec{b} = \sqrt{6}\]
Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\]
\[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 1\]
Express the vector \[\vec{a} = 5 \text{i} - 2 \text{j} + 5 \text{k}\] as the sum of two vectors such that one is parallel to the vector \[\vec{b} = 3 \text{i} + \text{k}\] and other is perpendicular to \[\vec{b}\]
Decompose the vector \[6 \hat{i} - 3 \hat{j} - 6 \hat{k}\] into vectors which are parallel and perpendicular to the vector \[\hat{i} + \hat{j} + \hat{k} .\]
If \[\vec{a} \cdot \vec{a} = 0 \text{ and } \vec{a} \cdot \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] ?
If \[\vec{c}\] s perpendicular to both \[\vec{a} \text{ and } \vec{b}\] then prove that it is perpendicular to both \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b}\]
If a vector \[\vec{a}\] is perpendicular to two non-collinear vectors \[\vec{b} \text{ and } \vec{c} , \text{ then show that } \vec{a}\] is perpendicular to every vector in the plane of \[\vec{b} \text{ and } \vec{c} .\]
If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} ,\] show that the angle θ between the vectors \[\vec{b} \text{ and } \vec{c}\] is given by \[\frac{\left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 - \left| \vec{c} \right|^2}{2\left| \vec{b} \right| \left| \vec{c} \right|} .\]
Let \[\vec{u,} \vec{v} \text{ and } \vec{w}\] be vectors such \[\vec{u} + \vec{v} + \vec{w} = \vec{0} .\] If \[\left| \vec{u} \right| = 3, \left| \vec{v} \right| = 4 \text{ and } \left| \vec{w} \right| = 5,\] then find \[\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} .\]
Let \[\vec{a} = x^2 \hat{i} + 2 \hat{j} - 2 \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = x^2 \hat{i} + 5 \hat{j} - 4 \hat{k}\] be three vectors. Find the values of x for which the angle between \[\vec{a} \text{ and } \vec{b}\ \] is acute and the angle between \[\vec{b} \text{ and } \vec{c}\] is obtuse.
Find the values of x and y if the vectors \[\vec{a} = 3 \hat{i} + x \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{j} + y \hat{k}\] are mutually perpendicular vectors of equal magnitude.
If \[\vec{a}\] \[\vec{b}\] are two vectors such that \[\left| \vec{a} + \vec{b} \right| = \left| \vec{b} \right|\] then prove that \[\vec{a} + 2 \vec{b}\] is perpendicular to \[\vec{a}\]
If `|vec"a"| = 4, |vec"b"| = 3` and `vec"a".vec"b" = 6 sqrt(3)`, then find the value of `|vec"a" xx vec"b"|`.
Which of the following is magnitude of vectors. `veca = hati + hatj + hatk`
What are the values of x for which the angle between the vectors? `2x^2hati + 3xhatj + hatk` and `hati - 2hatj + x^2hatk` is obtuse?