English

A Unit Vector → a Makes Angles π 4 a N D π 3 with ^ I and ^ J Respectively and an Acute Angle θ with ^ K Find the Angle θ and Components of → a - Mathematics

Advertisements
Advertisements

Question

A unit vector \[\vec{a}\] makes angles \[\frac{\pi}{4}\text{ and }\frac{\pi}{3}\] with \[\hat{i}\] and \[\hat{j}\]  respectively and an acute angle θ with \[\hat{k}\] .  Find the angle θ and components of \[\vec{a}\] .

Sum

Solution

\[\text{ Let  }\vec{a} = a_1 \hat{i} {} + a_2 \hat{j} {+a}_3 \hat{k} , \text{ where } a_1 , a_2 \text{ and } a_3 \text{ are components of } \vec{a} .\]
\[ \Rightarrow {a_1}^2 + {a_2}^2 + {a_3}^2 = 1............... ( \text{ Because   }\vec{a}  \text{  is a unit vector  }) . . . \left( 1 \right)\]
\[\text{ Now },\]
\[ \vec{a} . \text{i} = a_1 \]
\[ \Rightarrow \left| \vec{a} \right|\left| \hat{i} \right| \cos \frac{\pi}{4} = a_1 (\text{ Because the angle between } \vec{a} \text{ and } \hat{i}  \text{ is  }\frac{\pi}{4})\]
\[ \Rightarrow \left( 1 \right) \left( 1 \right) \frac{1}{\sqrt{2}} = a_1 ...........(\text{ Because } \vec{a} \text{ and } \hat{i} \text{ are unit vectors })\]
\[ \Rightarrow a_1 = \frac{1}{\sqrt{2}}\]
\[\text{ Again },\]
\[ \vec{a} . \hat{j} = a_2 \]
\[ \Rightarrow \left| \vec{a} \right|\left| \hat{i} \right| \cos \frac{\pi}{3} = a_2........... (\text{ Because the angle between } \vec{a} \text{ and } \hat{i} \text{ is }\frac{\pi}{3})\]
\[ \Rightarrow \left( 1 \right) \left( 1 \right) \frac{1}{2} = a_2 ...........(\text{ Because } \vec{a} \text{ and } \hat{i} \text{ are unit  vectors })\]
\[ \Rightarrow a_2 = \frac{1}{2}\]
\[\text{ Now from } (1),\]
\[ \left( \frac{1}{\sqrt{2}} \right)^2 + \left( \frac{1}{2} \right)^2 + {a_3}^2 = 1\]
\[ \Rightarrow \frac{1}{2} + \frac{1}{4} + {a_3}^2 = 1\]
\[ \Rightarrow \frac{3}{4} + {a_3}^2 = 1\]
\[ \Rightarrow {a_3}^2 = \frac{1}{4}\]
\[ \Rightarrow a_3 = \frac{1}{2}\]
\[\text{ Now },\]
\[ \vec{a} . \hat{k} = a_3 \]
\[ \Rightarrow \left| \vec{a} \right|\left| \hat{k} \right| \cos \theta = \frac{1}{2}.......... (\text{ Because the angle between } \vec{a} \text{ and } \hat{k} \text{ is }\theta)\]
\[ \Rightarrow \left( 1 \right) \left( 1 \right) \cos \theta = \frac{1}{2}..........(\text{ Because } \vec{a} \text{ and } \hat{i} \hat{\text{ are unit }}vectors)\]
\[ \Rightarrow \theta = \cos^{- 1} \left( \frac{1}{2} \right) = \frac{\pi}{3}\]
\[\text{ And } \]
\[ \vec{a} =\frac{1}{\sqrt{2}}\hat{i} {} + \frac{1}{2} \hat{j} + \frac{1}{2} \hat{k} \] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 24: Scalar Or Dot Product - Exercise 24.1 [Page 31]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 24 Scalar Or Dot Product
Exercise 24.1 | Q 28 | Page 31

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Compute the magnitude of the following vector:

`veca = hati + hatj + hatk;` `vecb = 2hati - 7hatj - 3hatk`;  `vecc = 1/sqrt3 hati + 1/sqrt3 hatj - 1/sqrt3 hatk`


Write two different vectors having same direction.


The value of is `hati.(hatj xx hatk)+hatj.(hatixxhatk)+hatk.(hatixxhatj)` is ______.


If θ is the angle between any two vectors `veca` and `vecb,` then `|veca.vecb| = |veca xx vecb|` when θ is equal to ______.


Find the projection of \[\vec{b} + \vec{c}  \text { on }\vec{a}\]  where \[\vec{a} = 2 \hat{i} - 2 \hat{j} + \hat{k} , \vec{b} = \hat{i} + 2 \hat{j} - 2 \hat{k} \text{ and } \vec{c} = 2 \hat{i} - \hat{j} + 4 \hat{k} .\]


If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\]  in each of the following. 

\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 8\] 


If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\]  in each of the following. 

\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 12\] 


Find \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 12 \text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find  \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 8 \text{ and } \left| \vec{a} \right| = 8\left| \vec{b} \right|\]


Find \[\left| \vec{a} \right| and \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 3\text{  and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find \[\left| \vec{a} - \vec{b} \right|\]  

\[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = 4 \text{ and } \vec{a} \cdot \vec{b} = 1\] 


Find \[\left| \vec{a} - \vec{b} \right|\] if  

\[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 4\]


Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] if 

\[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = 2 \text{ and } \vec{a} \cdot \vec{b} = \sqrt{6}\] 


Express the vector \[\vec{a} = 5 \text{i} - 2 \text{j} + 5 \text{k}\] as the sum of two vectors such that one is parallel to the vector \[\vec{b} = 3 \text{i} + \text{k}\]  and other is perpendicular to \[\vec{b}\]


Express \[2 \hat{i} - \hat{j} + 3 \hat{k}\] as the sum of a vector parallel and a vector perpendicular to \[2 \hat{i} + 4 \hat{j} - 2 \hat{k} .\] 

 


Let \[\vec{a} = 5 \hat{i} - \hat{j} + 7 \hat{k} \text{ and } \vec{b} = \hat{i} - \hat{j} + \lambda \hat{k} .\] Find λ such that \[\vec{a} + \vec{b}\] is orthogonal to \[\vec{a} - \vec{b}\] 


If \[\vec{a} \cdot \vec{a} = 0 \text{ and } \vec{a} \cdot \vec{b} = 0,\] what can you conclude about the vector \[\vec{b}\] ?


If \[\vec{a,} \vec{b,} \vec{c}\]  are three non-coplanar vectors, such that \[\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0,\] then show that \[\vec{d}\] is the null vector.


If a vector \[\vec{a}\] is perpendicular to two non-collinear vectors \[\vec{b} \text{ and } \vec{c} , \text{ then show that } \vec{a}\] is perpendicular to every vector in the plane of \[\vec{b} \text{ and } \vec{c} .\] 


Let \[\vec{u,} \vec{v} \text{ and } \vec{w}\]  be vectors such \[\vec{u} + \vec{v} + \vec{w} = \vec{0} .\] If \[\left| \vec{u} \right| = 3, \left| \vec{v} \right| = 4 \text{ and } \left| \vec{w} \right| = 5,\] then find \[\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u} .\]


Find the values of x and y if the vectors \[\vec{a} = 3 \hat{i} + x \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{j} + y \hat{k}\] are mutually perpendicular vectors of equal magnitude. 


If `|vec"a"| = 4, |vec"b"| = 3` and `vec"a".vec"b" = 6 sqrt(3)`, then find the value of `|vec"a" xx vec"b"|`.


Which of the following is magnitude of vectors. `veca = hati + hatj + hatk`


What is the product of  `(3veca * 5vecb) * (2veca + 7vecb)`


What are the values of x for which the angle between the vectors? `2x^2hati + 3xhatj + hatk` and `hati - 2hatj + x^2hatk` is obtuse?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×