English

What are the values of x for which the angle between the vectors? 2x2i^+3xj^+k^ and i^-2j^+x2k^ is obtuse? - Mathematics

Advertisements
Advertisements

Question

What are the values of x for which the angle between the vectors? `2x^2hati + 3xhatj + hatk` and `hati - 2hatj + x^2hatk` is obtuse?

Sum

Solution

Let `veca = 2x^2hati + 3xhatj + hatk` and `vecb = hati - 2hatj + x^2hatk`

∵ Angle between the vectors is obtuse

`\implies` cos θ < 0

`\implies (veca.vecb)/(|veca||vecb|) < 0`

`\implies veca . vecb < 0`

`\implies` 2x2 – 6x + x2 < 0

`\implies` 3x(x – 2) < 0

`\implies` 0 < x < 2

i.e. x ∈ (0, 2)

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (April) Specimen Paper

RELATED QUESTIONS

Compute the magnitude of the following vector:

`veca = hati + hatj + hatk;` `vecb = 2hati - 7hatj - 3hatk`;  `vecc = 1/sqrt3 hati + 1/sqrt3 hatj - 1/sqrt3 hatk`


Write two different vectors having same magnitude.


Write two different vectors having same direction.


If θ is the angle between any two vectors `veca` and `vecb,` then `|veca.vecb| = |veca xx vecb|` when θ is equal to ______.


If \[\vec{a} = 5 \hat{i} - \hat{j} - 3 \hat{k} \text{ and } \vec{b} = \hat{i} + 3 \hat{j} - 5 \hat{k} ,\] then show that the vectors \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b} \] are orthogonal.


A unit vector \[\vec{a}\] makes angles \[\frac{\pi}{4}\text{ and }\frac{\pi}{3}\] with \[\hat{i}\] and \[\hat{j}\]  respectively and an acute angle θ with \[\hat{k}\] .  Find the angle θ and components of \[\vec{a}\] .


If two vectors \[\vec{a} \text{ and } \vec{b}\] are such that \[\left| \vec{a} \right| = 2, \left| \vec{b} \right| = 1 \text{ and } \vec{a} \cdot \vec{b} = 1,\]  then find the value of \[\left( 3 \vec{a} - 5 \vec{b} \right) \cdot \left( 2 \vec{a} + 7 \vec{b} \right) .\] 


If \[\vec{a}\] is a unit vector, then find \[\left| \vec{x} \right|\]  in each of the following. 

\[\left( \vec{x} - \vec{a} \right) \cdot \left( \vec{x} + \vec{a} \right) = 12\] 


Find \[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 12 \text{ and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find \[\left| \vec{a} \right| and \left| \vec{b} \right|\] if 

\[\left( \vec{a} + \vec{b} \right) \cdot \left( \vec{a} - \vec{b} \right) = 3\text{  and } \left| \vec{a} \right| = 2\left| \vec{b} \right|\]


Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\] if 

\[\left| \vec{a} \right| = \sqrt{3}, \left| \vec{b} \right| = 2 \text{ and } \vec{a} \cdot \vec{b} = \sqrt{6}\] 


Find the angle between two vectors \[\vec{a} \text{ and } \vec{b}\]  

\[\left| \vec{a} \right| = 3, \left| \vec{b} \right| = 3 \text{ and } \vec{a} \cdot \vec{b} = 1\]


If \[\vec{a} \text{ and } \vec{b}\] are two vectors of the same magnitude inclined at an angle of 30°, such that \[\vec{a} \cdot \vec{b} = 3, \text{ find } \left| \vec{a} \right|, \left| \vec{b} \right| .\] 


Express \[2 \hat{i} - \hat{j} + 3 \hat{k}\] as the sum of a vector parallel and a vector perpendicular to \[2 \hat{i} + 4 \hat{j} - 2 \hat{k} .\] 

 


If \[\vec{c}\] s perpendicular to both \[\vec{a} \text{ and } \vec{b}\] then prove that it is perpendicular to both \[\vec{a} + \vec{b} \text{ and } \vec{a} - \vec{b}\] 


If \[\left| \vec{a} \right| = a \text{ and } \left| \vec{b} \right| = b,\] prove that \[\left( \frac{\vec{a}}{a^2} - \frac{\vec{b}}{b^2} \right)^2 = \left( \frac{\vec{a} - \vec{b}}{ab} \right)^2 .\] 


If \[\vec{a,} \vec{b,} \vec{c}\]  are three non-coplanar vectors, such that \[\vec{d} \cdot \vec{a} = \vec{d} \cdot \vec{b} = \vec{d} \cdot \vec{c} = 0,\] then show that \[\vec{d}\] is the null vector.


If \[\vec{a} + \vec{b} + \vec{c} = \vec{0} ,\] show that the angle θ between the vectors \[\vec{b} \text{ and } \vec{c}\] is given by  \[\frac{\left| \vec{a} \right|^2 - \left| \vec{b} \right|^2 - \left| \vec{c} \right|^2}{2\left| \vec{b} \right| \left| \vec{c} \right|} .\]


Let \[\vec{a} = x^2 \hat{i} + 2 \hat{j} - 2 \hat{k} , \vec{b} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = x^2 \hat{i} + 5 \hat{j} - 4 \hat{k}\] be three vectors. Find the values of x for which the angle between \[\vec{a} \text{ and } \vec{b}\ \]  is acute and the angle between \[\vec{b} \text{ and } \vec{c}\] is obtuse.


Find the values of x and y if the vectors \[\vec{a} = 3 \hat{i} + x \hat{j} - \hat{k} \text{ and } \vec{b} = 2 \hat{i} + \hat{j} + y \hat{k}\] are mutually perpendicular vectors of equal magnitude. 


If \[\vec{a}\] \[\vec{b}\]  are two vectors such that \[\left| \vec{a} + \vec{b} \right| = \left| \vec{b} \right|\] then prove that \[\vec{a} + 2 \vec{b}\] is perpendicular to \[\vec{a}\] 


If `|vec"a"| = 4, |vec"b"| = 3` and `vec"a".vec"b" = 6 sqrt(3)`, then find the value of `|vec"a" xx vec"b"|`.


Which of the following is magnitude of vectors. `veca = hati + hatj + hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×