Advertisements
Advertisements
प्रश्न
A wire AB is carrying a steady current of 10 A and is lying on the table. Another wire CD carrying 6 A is held directly above AB at a height of 2 mm. Find the mass per unit length of the wire CD so that it remains suspended at its position when left free. Give the direction of the current flowing in CD with respect to that in AB. [Take the value of g = 10 ms−2]
उत्तर
Force per unit length between the current carrying wires is given as:
`F = (μ_0)/(4pi) (2I_1I_2)/r `,where I1 = current in wire AB = 10 A and I2 = current in wire CD = 6 A`
r = distance between wires = 2 mm = 2 × 10-3 m.
Let m be the mass per unit length of wire CD. As the force balances the weight of the wire
`therefore (μ_0)/(4pi) (2I_1I_2)/r = mg => 10^-7 xx (2xx10xx6)/(2xx10^-3) = m xx 10`
`therefore m = 10^-7 xx (2 xx 10 xx xx 6)/(2 xx 10^-3) xx 1/10 = 6 xx 10^-4 kg \ m^-1`
APPEARS IN
संबंधित प्रश्न
Obtain an expression for the energy stored in a solenoid of self-inductance ‘L’ when the current through it grows from zero to ‘I’.
Derive an expression for the mutual inductance of two long co-axial solenoids of same length wound one over the other,
A closely wound solenoid 80 cm long has 5 layers of windings of 400 turns each. The diameter of the solenoid is 1.8 cm. If the current carried is 8.0 A, estimate the magnitude of B inside the solenoid near its centre.
A magnetic field of 100 G (1 G = 10−4 T) is required which is uniform in a region of linear dimension about 10 cm and area of cross-section about 10−3 m2. The maximum current-carrying capacity of a given coil of wire is 15 A and the number of turns per unit length that can be wound round a core is at most 1000 turns m−1. Suggest some appropriate design particulars of a solenoid for the required purpose. Assume the core is not ferromagnetic.
Define self-inductance of a coil.
How is the magnetic field inside a given solenoid made strong?
A circular coil of one turn of radius 5.0 cm is rotated about a diameter with a constant angular speed of 80 revolutions per minute. A uniform magnetic field B = 0.010 T exists in a direction perpendicular to the axis of rotation. Suppose the ends of the coil are connected to a resistance of 100 Ω. Neglecting the resistance of the coil, find the heat produced in the circuit in one minute.
A tightly-wound, long solenoid is kept with its axis parallel to a large metal sheet carrying a surface current. The surface current through a width dl of the sheet is Kdl and the number of turns per unit length of the solenoid is n. The magnetic field near the centre of the solenoid is found to be zero. (a) Find the current in the solenoid. (b) If the solenoid is rotated to make its axis perpendicular to the metal sheet, what would be the magnitude of the magnetic field near its centre?
A current of 1.0 A is established in a tightly wound solenoid of radius 2 cm having 1000 turns/metre. Find the magnetic energy stored in each metre of the solenoid.