Advertisements
Advertisements
प्रश्न
आकृति में, यदि AB || CD, ∠APQ = 50° और ∠PRD = 127° है, तो x और Y ज्ञात कीजिए।
उत्तर
हमारे पास AB || CD है और PQ एक तिर्यक रेखा है।
∴ ∠APQ = ∠PQR ...[एकांतर अंत: कोण]
= 50° = x ...[∵ ∠APQ = 50° (दिया गया है)]
फिर से, AB || CD और PR तिर्यक रेखाएँ हैं।
∴ ∠APR = ∠PRD ...[एकांतर अंत: कोण]
= ∠APR = 127° ...[∵ ∠PRD = 127° (दिया गया है)]
= ∠APQ + ∠QPR = 127°
= 50° + y = 127° ...[∵ ∠APQ = 50° (दिया गया है)]
= y = 127° − 50°
= y = 77°
इस प्रकार, x = 50° और y = 77°
APPEARS IN
संबंधित प्रश्न
आकृति में, x और y के मान ज्ञात कीजिए और फिर दर्शाइए कि AB || CD है।
आकृति में, यदि AB || CD, CD || EF और y : z = 3 : 7 है, तो x का मान ज्ञात कीजिए।
आकृति में, यदि AB || CD, EF ⊥ CD और ∠GED = 126° है, तो ∠AGE, ∠GEF और ∠FGE ज्ञात कीजिए।
आकृति में, यदि PQ || ST, ∠PQR = 110° और ∠RST = 130° है, तो ∠QRS ज्ञात कीजिए।
[संकेत: बिंदु R से होकर ST के समांतर एक रेखा खिंचिए।]
आकृति में, PQ और RS दो दर्पण है जो एक दूसरे के समांतर रखे गए है। एक आपतन किरण (incident ray) AB, दर्पण PQ से B पर टकराती है और परावर्तित किरण (reflected ray) पथ BC पर चलकर दर्पण RS से C पर टकराती है तथा पुनः CD के अनुदिश परावर्तित हो जाती है। सिद्ध कीजिए कि AB || CD है।
दो रेखाएँ l और m एक ही रेखा n पर लंब हैं। क्या l और m परस्पर लंब हैं? अपने उत्तर के लिए कारण दीजिए।
निम्नलिखित आकृति में, BA || ED और BC || EF है। दर्शाइए कि ∠ABC = ∠DEF है।
[संकेत : DE को आगे बढ़ाइए ताकि वह BC को, मान लीजिए P पर प्रतिच्छेद करें।]
निम्नलिखित आकृति में, BA || ED और BC || EF है। दर्शाइए कि ∠ABC + ∠DEF = 180° है।
किसी त्रिभुज के कोणों का अनुपात 2 : 3 : 4 है। इस त्रिभुज के तीनों कोण ज्ञात कीजिए।
एक तिर्यक रेखा दो समांतर रेखाओं को प्रतिच्छेद करती है। सिद्ध कीजिए कि इस प्रकार बने संगत कोणों के युग्म के समद्विभाजक समांतर होते हैं।