मराठी

Ab is a Line Segment. P and Q Are Points on Opposite Sides of Ab Such that Each of Them Is Equidistant from the Points a and B (See Fig. 10.26). Show that the Line Pq Is Perpendicular Bisector of Ab. -

Advertisements
Advertisements

प्रश्न

AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (See Fig. 10.26). Show that the line PQ is perpendicular bisector of AB. 

 

थोडक्यात उत्तर

उत्तर

Consider the figure,
We have
AB is a line segment and P,Q are points on opposite sides of AB such that  

AP= BP                   .........................(1) 
AQ= BQ                   ........................(2) 

We have to prove that PQ is perpendicular bisector of AB.
Now consider ΔPAQand ΔPBQ, 

We have AP = BP               [∵ from (1)]

AQ = BQ                            [∵ from (2)] 

And PQ = PQ                    [Common site] 

ΔPAQ ≅ ΔPBQ             .......................(3)              [From SSS congruence] 

Now, we can observe that Δ𝐴𝑃𝐵 𝑎𝑛𝑑 Δ𝐴𝐵𝑄 are isosceles triangles.(From 1 and 2) 

⇒ ∠𝑃𝐴𝐵 = ∠𝑃𝐵𝐴 𝑎𝑛𝑑 ∠𝑄𝐴𝐵 = ∠𝑄𝐵𝐴 

Now consider Δ PAC and , ΔPBC
C is the point of intersection of AB and PQ.  

PA= PB                       [From (1)]  

∠APC=∠BPC              [From (3)] 

PC= PC                    [Common side]  

So, from SAS congruency of triangle Δ PAC≅ Δ PBC 

⇒ AC = CB and∠PCA = ∠PCB …….(4) 

[ ∵Corresponding parts of congruent triangles are equal]
And also, ACB is line segment  

⇒∠ACP +∠BCP =180° 

But∠ ACP=PCB 

∠ACP =∠PCB =90°                     .........................(5) 

We have AC = CBWe have AC = CB C We have AC = CB ⇒ is the midpoint of AB  
From (4) and (5)

We can conclude that PC is the perpendicular bisector of AB
Since C is a point on the line PQ, we can say that PQ is the perpendicular bisector of AB.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×