Advertisements
Advertisements
प्रश्न
ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see the given figure). If AD is extended to intersect BC at P, show that
- ΔABD ≅ ΔACD
- ΔABP ≅ ΔACP
- AP bisects ∠A as well as ∠D.
- AP is the perpendicular bisector of BC.
उत्तर
(i) In ΔABD and ΔACD,
AB = AC ...(Given)
BD = CD ...(Given)
AD = AD ...(Common)
∴ ΔABD ≅ ΔACD ...(By SSS congruence rule)
⇒ ∠BAD = ∠CAD ...(By Corresponding parts of congruent triangles)
⇒ ∠BAP = ∠CAP …(1)
(ii) In ΔABP and ΔACP,
AB = AC ...(Given)
∠BAP = ∠CAP ...[From equation (1)]
AP = AP ...(Common)
∴ ΔABP ≅ ΔACP ...(By SAS congruence rule)
⇒ BP = CP ...(By Corresponding parts of congruent triangles) …(2)
(iii) From equation (1),
∠BAP = ∠CAP
Hence, AP bisects ∠A.
In ΔBDP and ΔCDP,
BD = CD ...(Given)
DP = DP ...(Common)
BP = CP ...[From equation (2)]
∴ ΔBDP ≅ ΔCDP ...(By SSS Congruence rule)
⇒ ∠BDP = ∠CDP ...(By Corresponding parts of congruent triangles) …(3)
Hence, AP bisects ∠D.
(iv) ΔBDP ≅ ΔCDP
∴ ∠BPD = ∠CPD ...(By Corresponding parts of congruent triangles) …(4)
∠BPD + ∠CPD = 180° ...(Linear pair angles)
∠BPD + ∠BPD = 180°
2∠BPD = 180° ...[From equation (4)]
∠BPD = 90° …(5)
From equations (2) and (5), it can be said that AP is the perpendicular bisector of BC.
APPEARS IN
संबंधित प्रश्न
AD is an altitude of an isosceles triangles ABC in which AB = AC. Show that
- AD bisects BC
- AD bisects ∠A
ABC is an isosceles triangle with AB = AC. Drawn AP ⊥ BC to show that ∠B = ∠C.
In two right triangles one side an acute angle of one are equal to the corresponding side and angle of the other. Prove that the triangles are congruent.
Prove that in a quadrilateral the sum of all the sides is greater than the sum of its diagonals.
In the following figure, BA ⊥ AC, DE ⊥ DF such that BA = DE and BF = EC. Show that ∆ABC ≅ ∆DEF.
ABC is an isosceles triangle in which AC = BC. AD and BE are respectively two altitudes to sides BC and AC. Prove that AE = BD.
Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.
ABCD is a quadrilateral such that diagonal AC bisects the angles A and C. Prove that AB = AD and CB = CD.
ABC is a right triangle such that AB = AC and bisector of angle C intersects the side AB at D. Prove that AC + AD = BC.
ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD.