मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

∆ABC is an equilateral triangle. Point P is on base BC such that PC = 13BC, if AB = 6 cm find AP. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

∆ABC is an equilateral triangle. Point P is on base BC such that PC = `1/3`BC, if AB = 6 cm find AP.

बेरीज

उत्तर

∆ABC is an equilateral triangle.

It is given that,

PC = `1/3`BC

PC = `1/3 xx 6`

PC = 2 cm

∴ BP = BC − PC

= 6 − 2

= 4 cm

Since, ∆ABC is an equilateral triangle, OA is the perpendicular bisector of BC.

OC = `"BC"/2`

= `6/2`

= 3 cm

∴ OP = OC − PC

= 3 − 2

= 1 cm   ...(1)

According to Pythagoras theorem,

In ∆AOB,

AB2 = AO2 + OC2

∴ (6)2 = AO2 + (3)2

∴ 36 = AO2 + 9

∴ AO2 = 36 − 9

∴ AO2 = 27

∴ AO = `sqrt27`

∴ AO = `3sqrt3` cm   ...(2)

In ∆AOP,

AP2 = AO2 + OP2

∴ AP2 = `(3sqrt3)^2 + (1)^2 `

∴ AP2 = 27 + 1

∴ AP2 = 28

∴ AP = `sqrt28`

∴ AP = `2sqrt7` cm

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Pythagoras Theorem - Problem Set 2 [पृष्ठ ४५]

संबंधित प्रश्‍न

In the following figure, AE = EF = AF = BE = CF = a, AT ⊥ BC. Show that AB = AC =  `sqrt3xxa`


Find the length of the side and perimeter of an equilateral triangle whose height is `sqrt3` cm.


From the information given in the figure, prove that PM = PN =  \[\sqrt{3}\]  × a


Find the length of the hypotenuse in a right angled triangle where the sum
of the squares of the sides making right angle is 169.
(A)15 (B) 13 (C) 5 (D) 12


Prove that, in a right angled triangle, the square of the hypotenuse is
equal to the sum of the squares of remaining two sides.


In right angled triangle PQR,
if ∠ Q = 90°, PR = 5,
QR = 4 then find PQ and hence find tan R.


Choose the correct alternative: 

ΔABC and ΔDEF are equilateral triangles. If ar(ΔABC): ar(ΔDEF) = 1 : 2 and AB = 4, then what is the length of DE?


From given figure, In ∆ABC, AD ⊥ BC, then prove that AB2 + CD2 = BD2 + AC2 by completing activity.

Activity: From given figure, In ∆ACD, By pythagoras theorem

AC2 = AD2 + `square`

∴ AD2 = AC2 – CD2    ......(I)

Also, In ∆ABD, by pythagoras theorem,

AB2 = `square` + BD2

∴ AD2 = AB2 – BD2    ......(II)

∴ `square` − BD2 = AC2 − `square`

∴ AB2 + CD2 = AC2+ BD2


A ladder 10 m long reaches a window 8 m above the ground. Find the distance of the foot of the ladder from the base of wall. Complete the given activity.

Activity: As shown in figure suppose


PR is the length of ladder = 10 m

At P – window, At Q – base of wall, At R – foot of ladder

∴ PQ = 8 m

∴ QR = ?

In ∆PQR, m∠PQR = 90°

By Pythagoras Theorem,

∴ PQ2 + `square` = PR2    .....(I)

Here, PR = 10, PQ = `square`

From equation (I)

82 + QR2 = 102

QR2 = 102 – 82

QR2 = 100 – 64

QR2 = `square`

QR = 6

∴ The distance of foot of the ladder from the base of wall is 6 m.


Complete the following activity to find the length of hypotenuse of right angled triangle, if sides of right angle are 9 cm and 12 cm.

Activity: In ∆PQR, m∠PQR = 90°

By Pythagoras Theorem,

PQ2 + `square` = PR2    ......(I)

∴ PR2 = 92 + 122 

∴ PR2 = `square` + 144

∴ PR2 = `square`

∴ PR = 15

∴ Length of hypotenuse of triangle PQR is `square` cm.


From given figure, in ∆PQR, if ∠QPR = 90°, PM ⊥ QR, PM = 10, QM = 8, then for finding the value of QR, complete the following activity.


Activity: In ∆PQR, if ∠QPR = 90°, PM ⊥ QR,  ......[Given]

In ∆PMQ, by Pythagoras Theorem,

∴ PM2 + `square` = PQ2     ......(I)

∴ PQ2 = 102 + 82 

∴ PQ2 = `square` + 64

∴ PQ2 = `square`

∴ PQ = `sqrt(164)`

Here, ∆QPR ~ ∆QMP ~ ∆PMR

∴ ∆QMP ~ ∆PMR

∴ `"PM"/"RM" = "QM"/"PM"`

∴ PM2 = RM × QM

∴ 102 = RM × 8

RM = `100/8 = square`

And,

QR = QM + MR

QR = `square` + `25/2 = 41/2`


A congruent side of an isosceles right angled triangle is 7 cm, Find its perimeter


ΔPQR, is a right angled triangle with ∠Q = 90°, QR = b, and A(ΔPQR) = a. If QN ⊥ PR, then prove that QN = `(2ab)/sqrt(b^4 + 4a^2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×