Advertisements
Advertisements
प्रश्न
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
17, 23 और 29
उत्तर
17, 23 और 29
आइये सबसे पहले 17, 23 और 29 के गुणनखंड ज्ञात करें
17 = 1 × 17
23 = 1 × 23
29 = 1 × 29
17, 23 और 29 का L.C.M = 1 × 17 × 23 × 29
17, 23 और 29 का L.C.M = 11339
17, 23 और 29 का H.C.F = 1
APPEARS IN
संबंधित प्रश्न
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
140
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
3825
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
26 और 91
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
12, 15 और 21
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
8, 9 और 25
HCF (306, 657) = 9 दिया है। LCM (306, 657) ज्ञात कीजिए।
संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक
यदि 65 और 117 के HCF को 65m – 117 के रूप में व्यक्त किया जा सके तो m का मान है
वह सबसे बड़ी संख्या, जिससे 70 और 125 को विभाजित करने पर क्रमशः शेषफल 5 और 8 प्राप्त हों, है
यदि दो धनात्मक पूर्णांकों p और q को p = ab2 और q = a3b के रूप में व्यक्त किया जा सकता है, जहाँ a और b अभाज्य संख्याएँ हैं, तो LCM (p, q) है