Advertisements
Advertisements
प्रश्न
अभाज्य गुणनखंडन विधि द्वारा निम्नलिखित पूर्णांकों के HCF और LCM ज्ञात कीजिए:
8, 9 और 25
उत्तर
![]() |
![]() |
![]() |
8 = 2 × 2 × 2
9 = 3 × 3
25 = 5 × 5
8, 9 और 25 का L.C.M = 22 × 32 × 52
8, 9 और 25 का L.C.M = 1800
8, 9 और 25 का H.C.F = 1
APPEARS IN
संबंधित प्रश्न
निम्नलिखित संख्या को अभाज्य गुणनखंड के गुणनफल के रूप में व्यक्त कीजिए:
140
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
26 और 91
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
510 और 92
पूर्णांकों के निम्नलिखित युग्म के HCF और LCM ज्ञात कीजिए तथा इसकी जाँच कीजिए कि दो संख्याओं का गुणनफल = HCF × LCM है।
336 और 54
किसी पूर्णांक q के लिए प्रत्येक विषम पूर्णांक निम्नलिखित रूप का होता है
संख्या n2 – 1, 8 से विभाज्य होती है, यदि n है एक
यदि 65 और 117 के HCF को 65m – 117 के रूप में व्यक्त किया जा सके तो m का मान है
यदि दो धनात्मक पूर्णांकों a और b को a = x3y2 और b =xy3 के रूप में व्यक्त किया जाए, जहाँ x और y अभाज्य संख्याएँ हैं, तो HCF (a, b) है
1 से 10 तक की संख्याओं (दोनों सम्मिलित हैं) में से सभी संख्याओं से विभाज्य न्यूनतम संख्या है
स्पष्ट कीजिए कि 3 × 5 × 7 + 7 एक भाज्य संख्या क्यों है।