मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता १२

An amount of ₹ 65,000 is invested in three bonds at the rates of 6%, 8% and 9% per annum respectively. The total annual income is ₹ 4,800. The income from the third bond is - Mathematics

Advertisements
Advertisements

प्रश्न

An amount of ₹ 65,000 is invested in three bonds at the rates of 6%, 8% and 9% per annum respectively. The total annual income is ₹ 4,800. The income from the third bond is ₹ 600 more than that from the second bond. Determine the price of each bond. (Use Gaussian elimination method.)

बेरीज

उत्तर

Let the amounts of 3 bounds be x, y, z

x + y + z = 65,000

`(6x)/00 + (8y)/100 + (9z)/100` = 4800

6x + 8y + 9z = 480000

`(9z)/100 = 600 + (8y)/100`

9z = 60000 + 8y

0x – 8y + 9z = 60000

Augmented martix

[A | B] = `[(1, 1, 1, |, 65000),(6, 8, 9, |, 480000),(0, -8, 9, |, 60000)]`

`{:("R"_2 -> "R"_2 - 6"R"_1),(->):} [(1, 1, 1, |, 65000),(0, 2, 3, |, 90000),(0, -8, 9, |, 60000)]`

`{:("R"_3 -> "R"_3 + 4"R"_2),(->):} [(1, 1, 1, |, 65000),(0, 2, 3, |, 90000),(0, 0, 21, |, 402000)]`

Writing the equivalent equations from echelon from.

x + y + z = 65000   ........(1)

2y + 3z = 90000   ........(2)

21z = 42000

z = 20000

(2) ⇒ 2y = 90000 – 3 × 20000

2y = 30000

y = 15000

(1) ⇒ x + 15000 + 20000 = 65000

x = 30000

∴ x = 30000, y = 15000, z = 20000

shaalaa.com
Applications of Matrices: Solving System of Linear Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Applications of Matrices and Determinants - Exercise 1.5 [पृष्ठ ३७]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
पाठ 1 Applications of Matrices and Determinants
Exercise 1.5 | Q 3 | पृष्ठ ३७

संबंधित प्रश्‍न

Solve the following system of linear equations by matrix inversion method:

2x + 3y – z = 9, x + y + z = 9, 3x – y – z = – 1


Solve the following system of linear equations by matrix inversion method:

x + y + z – 2 = 0, 6x – 4y + 5z – 31 = 0, 5x + 2y + 2z = 13


If A = `[(-5, 1, 3),(7, 1, -5),(1, -1, 1)]` and B = `[(1, 1, 2),(3, 2, 1),(2, 1, 3)]`, Find the products AB and BA and hence solve the system of equations x + y + 2z = 1, 3x + 2y + z = 7, 2x + y + 3z = 2


Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method


The prices of three commodities A, B and C are ₹ x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B . Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P, Q and R earn ₹ 15,000, ₹ 1,000 and ₹ 4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)


Solve the following systems of linear equations by Cramer’s rule:

3x + 3y – z = 11, 2x – y + 2z = 9, 4x + 3y + 2z = 25


A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is ₹ 150. The cost of the two dosai, two idlies and four vadais is ₹ 200. The cost of five dosai, four idlies and two vadais is ₹ 250. The family has ₹ 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?


Solve the following systems of linear equations by Gaussian elimination method:

2x + 4y + 6z = 22, 3x + 8y + 5z = 27, – x + y + 2z = 2


If ax² + bx + c is divided by x + 3, x – 5, and x – 1, the remainders are 21, 61 and 9 respectively. Find a, b and c. (Use Gaussian elimination method.)


Choose the correct alternative:

If A = `[(1, tan  theta/2),(- tan theta/2, 1)]` and AB = I2, then B = 


Choose the correct alternative:

If A = `[(costheta, sintheta),(-sintheta, costheta)]` and A(adj A) = `[("k", 0),(0, "k")]`, then k =


Choose the correct alternative:

If A = `[(2, 3),(5, -2)]` be such that λA–1 = A, then λ is


Choose the correct alternative:

If ρ(A) ρ([A|B]), then the system AX = B of linear equations is


Choose the correct alternative:

If 0 ≤ θ ≤ π and the system of equations x + (sin θ)y – (cos θ)z = 0, (cos θ) x – y + z = 0, (sin θ) x + y + z = 0 has a non-trivial solution then θ is


Choose the correct alternative:

The augmented matrix of a system of linear equations is `[(1, 2, 7, 3),(0, 1, 4, 6),(0, 0, lambda - 7, mu + 7)]`. This system has infinitely many solutions if


Choose the correct alternative:

Let A = `[(2, -1, 1),(-1, 2, -1),(1, -1, 2)]` and 4B = `[(3, 1, -1),(1, 3, x),(-1, 1, 3)]`. If B is the inverse of A, then the value of x is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×