Advertisements
Advertisements
प्रश्न
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.
उत्तर
Let Anil's income = Rs. x and Sunita's income = Rs. y
According to given information, we have
`x/y = (3)/(5)`
⇒ 5x = 3y
⇒ 5x - 3y = 0 ....(i)
And,
`(x - 5000)/(y - 5000) = (1)/(3)` ....[Expense = Income - Saving]
⇒ 3x - 15000 = y - 5000
⇒ 3x - y = 10000 ....(ii)
Multiplying eqn. (ii) by 3, we get
9x - 3y = 30000 ....(iii)
Subtracting eqn. (i) from (iii), we get
4x = 30000
⇒ x = 7500
⇒ 5(7500) - 3y = 0
⇒ 37500 - 3y = 0
⇒ 3y = 37500
⇒ y = 12500
Hence, Anil's income is Rs.7500 and Sunita's income is Rs.12,500.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`[5y]/2 - x/3 = 8`
`y/2 + [5x]/3 = 12`
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
`1/5( x - 2 ) = 1/4( 1 - y )`
26x + 3y + 4 = 0
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
2x - 3y - 3 = 0
`[2x]/3 + 4y + 1/2` = 0
Solve the following simultaneous equation :
8v - 3u = 5uv
6v - 5u = -2uv
Solve the following simultaneous equations :
2(3u - v) = 5uv
2(u + 3v) = 5uv
Solve the following simultaneous equations:
41x + 53y = 135
53x + 41y = 147
If 1 is added to the denominator of a fraction, the fraction becomes `(1)/(2)`. If 1 is added to the numerator of the fraction, the fraction becomes 1. Find the fraction.
In a triangle, the sum of two angles is equal to the third angle. If the difference between these two angles is 20°, determine all the angles.
An eraser costs Rs. 1.50 less than a sharpener. Also, the cost of 4 erasers and 3 sharpeners is Rs.29. Taking x and y as the costs (in Rs.) of an eraser and a sharpener respectively, write two equations for the above statements and find the value of x and y.
A solution containing 12% alcohol is to be mixed with a solution containing 4% alcohol to make 20 gallons of solution containing 9% alcohol. How much of each solution should be used?