Advertisements
Advertisements
प्रश्न
Anil and Sunita have incomes in the ratio 3 : 5. If they spend in the ratio 1 : 3, each saves T 5000. Find the income of each.
उत्तर
Let Anil's income = Rs. x and Sunita's income = Rs. y
According to given information, we have
`x/y = (3)/(5)`
⇒ 5x = 3y
⇒ 5x - 3y = 0 ....(i)
And,
`(x - 5000)/(y - 5000) = (1)/(3)` ....[Expense = Income - Saving]
⇒ 3x - 15000 = y - 5000
⇒ 3x - y = 10000 ....(ii)
Multiplying eqn. (ii) by 3, we get
9x - 3y = 30000 ....(iii)
Subtracting eqn. (i) from (iii), we get
4x = 30000
⇒ x = 7500
⇒ 5(7500) - 3y = 0
⇒ 37500 - 3y = 0
⇒ 3y = 37500
⇒ y = 12500
Hence, Anil's income is Rs.7500 and Sunita's income is Rs.12,500.
APPEARS IN
संबंधित प्रश्न
For solving pair of equation, in this exercise use the method of elimination by equating coefficients :
13x+ 11y = 70
11x + 13y = 74
Solve for x and y :
`[ y + 7 ]/5 = [ 2y - x ]/4 + 3x - 5`
`[ 7 - 5x ]/2 + [ 3 - 4y ]/6 = 5y - 18`
Solve :
11(x - 5) + 10(y - 2) + 54 = 0
7(2x - 1) + 9(3y - 1) = 25
Solve the following pairs of equations:
y - x = 0.8
`(13)/(2(x + y)) = 1`
Solve the following pairs of equations:
`(2)/(3x + 2y) + (3)/(3x - 2y) = (17)/(5)`
`(5)/(3x + 2y) + (1)/(3x - 2y)` = 2
Can the following equations hold simultaneously?
7y - 3x = 7
5y - 11x = 87
5x + 4y = 43
If yes, find the value of x and y.
In a two-digit number, the sum of the digits is 7. The difference of the number obtained by reversing the digits and the number itself is 9. Find the number.
If 2 is added to the numerator and denominator it becomes `(9)/(10)` and if 3 is subtracted from the numerator and denominator it becomes `(4)/(5) `Find the fraction.
The ratio of two numbers is `(2)/(5)`. If 4 is added in first and 32 is subtracted from the second, the ratio becomes the reciprocal of the original ratio. Find the numbers.
Salman and Kirti start at the same time from two places 28 km apart. If they walk in the same direction, Salman overtakes Kirti in 28 hours but if they walk in the opposite directions, they meet in 4 hours. Find their speeds (in km/h).