Advertisements
Advertisements
प्रश्न
Answer in brief.
How much heat is evolved when 12 g of CO reacts with NO2? The reaction is:
4CO(g) 2NO2(g) → 4CO2(g) + N2(g), ΔrH° = - 1200 kJ
उत्तर
Given: ΔrH° = - 1200 kJ, Mass of CO = 12 g
To find: Heat evolved when 12g of CO reacts with NO2
Calculation:
According to the given reaction, 1200 kJ of heat is evolved when 4 moles of CO react with NO2. So heat evolved per mole is `(1200 "kJ")/(4 "mol")` = 300 kJ mol-1
Molar mass of CO = 12 + 16 = 28 g mol–1
Number of moles of CO = `"Mass of CO"/"Molar mass of CO" = (12 "g")/(28 "g mol"^-1)`= 0.4286 mol
So, heat evolved when 0.4286 moles of CO reacts
= 0.4286 mol × 300 kJ mol-1 = 128.58 kJ
The heat evolved when 12 g of CO reacts with NO2 is 128.58 kJ.
APPEARS IN
संबंधित प्रश्न
Answer the following question.
Calculate ΔrH° for the following reaction at 298 K:
1) 2H3BO3(aq) → B2O3(s) + 3H2O(l), ΔrH° = + 14.4 kJ
2) H3BO3(aq) → HBO2(aq) + H2O(l), ΔrH° = - 0.02 kJ
3) H2B4O7(s) → 2B2O3(s) + H2O(l), ΔrH° = + 17.3 kJ
The enthalpy change for the reaction, \[\ce{C2H4_{(g)} + H2_{(g)} -> C2H6_{(g)}}\] is −620 J when 100 mL of ethylene and 100 ml of \[\ce{H2}\] react at 1 bar pressure. Calculate the pressure volume type of work and ΔU for the reaction.
The standard enthalpy of formation of water is - 286 kJ mol-1. Calculate the enthalpy change for the formation of 0.018 kg of water.
Calculate the standard enthalpy of combustion of CH4(g) if ΔfH°(CH4) = – 74.8 kJ mol–1, ΔfH°(CO2) = – 393.5 kJ mol–1 and ΔfH°(H2O) = – 285.8 kJ mol–1.
Does the following reaction represent a thermochemical equation?
\[\ce{CH_{4(g)} + 2O_{2(g)} -> CO_{2(g)} + 2H2O_{(g)}}\], ∆fH° = –900 kJ mol–1
When 2 moles of C2H6(g) are completely burnt, 3129 kJ of heat is liberated. If ∆Hf for CO2(g) and H2O(l) are −395 and −286 kJ per mole respectively, the heat combustion of C2H6(g) is ____________.
A compound that has a high negative heat of formation is normally ____________.
The volume of oxygen required for complete combustion of 0.25 mole of methane at STP is ______.
When 6.0 g of graphite reacts with dihydrogen to give methane gas, 37.4 kJ of heat is liberated. What is standard enthalpy of formation of CH4 (g)?
The heat of formations of CO(g) and CO2(g) are −26.4 kcal and −94.0 kcal respectively. The heat of combustion of carbon monoxide will be ____________.
lf, \[\ce{C_{(s)} + O2_{(g)} -> CO2_{(g)}}\], ∆H = x .........(i)
\[\ce{CO_{(g)} + 1/2O2_{(g)} -> CO2_{(g)}}\], ∆H = y .......(ii)
Then, the heat of formation of CO is:
The heat evolved in the combustion of benzene is given by
\[\ce{C6H6 + 7 1/2O2 -> 6CO2_{(g)} + 3H2O_{(l)}}\]; ΔH = −3264.6 kJ
Which of the following quantities of heat energy will be evolved when 39 g C6H6 are burnt?
Which of the following equations has ΔfH° and ΔH° same?
Heat of formation of ethane, ethylene acetylene and carbon dioxide are - 136, - 66, - 228 and - 395 (all in kJ) respectively, most stable among them is ______.
Calculate the standard enthalpy of formation of CH3OH(l) from the following data:
- \[\ce{CH3OH_{(l)} + 3/2 O2_{(g)} -> CO2_{(g)} + 2H2O_{(l)}ΔH^° = - 726 kJ mol^{-1}}\]
- \[\ce{C_{(s)} + O2_{(g)} → CO2_{(g)}Δ_cH^° = – 393 kJ mol^{-1}}\]
- \[\ce{H2_{(g)} + 1/2 O2_{(g)} -> H2O_{(l)}Δ_fH^° = - 286 kJ mol^{-1}}\]
What is the amount of water formed by the combustion of 1.6 g methane?
How many moles of helium gas occupies 22.4 Lat 0°c and at 1 atmospheric pressure?
What is enthalpy of formation of NH3 if bond enthalpies as (N ≡ N) = - 941 kJ/mol.
\[\ce{(H - H)}\] = 436 kJ/mol and \[\ce{(N - H)}\] = 389 kJ/mol?
Calculate the standard enthalpy of the reaction:
SiO2(s) + 3C(graphite) → SiC(s) + 2CO(g) from the following reactions:
- Si(s) + O2(g) → SiO2(s), ΔrH° = −911kJ
- 2C(graphite) + O2(g) → 2CO(g), ΔrH° = −221kJ
- Si(s) + C(graphite) → SiC(s), ΔrH° = −65.3kJ
Standard enthalpy of combustion of a substance is given. Then Write thermochemical equation.
ΔcH0[C2H5OH(1)] = - 1409 kJ mol-1
Standard enthalpy of combustion of a substance is given. Then Write thermochemical equation.
ΔcH0[CH3CHO(l)] = - 1166 kJ mol-1
Heat of combustion of methane is - 890 kJ/mol. On combustion of 12 gm of methane in excess of oxygen, ______ heat is evolved.
The enthalpy of combustion of S (rhombic) is − 297 kJ mo1-1. Calculate the amount of sulphur required to produce 29. 74 kJ of heat.
Draw energy profile diagram and show:
- activated complex
- energy of activation for forward and backward reactions
- enthalpy of reaction
For the reaction, H2 + I2 ⇌ 2HI; ΔH = 12.4 kcal. The heat of formation of HI, ΔHf = ______.
Calculate heat evolved for combustion of 13 gm of acetylene (C2H2).
Given: \[\ce{C2H2_{(g)} + 5/2O_{2(g)}-> 2CO_{2(g)} + H2O_{(l)} \Delta_{(c)}H^{0} = - 1300 kJ}\]