Advertisements
Advertisements
प्रश्न
The standard enthalpy of formation of water is - 286 kJ mol-1. Calculate the enthalpy change for the formation of 0.018 kg of water.
उत्तर
Mass of H2O = 0.018 kg = 18 g
Number of moles of H2O = `("Mass of H"_2"O")/("Molar mass of H"_2"O") = (18 "g")/(18 "g mol"^-1)` = 1 mol
The thermochemical equation is,
\[\ce{H_{2(g)} + \frac{1}{2} O_{2(g)} -> H2O_{(l)}}\], ΔfH° = – 286 kJ mol–1
∴ Enthalpy change for formation of 1 mole H2O = - 286 kJ
APPEARS IN
संबंधित प्रश्न
Select the most appropriate option.
Which of the following reactions is exothermic?
Answer in brief.
How will you calculate reaction enthalpy from data on bond enthalpies?
Answer in brief.
What is the standard enthalpy of combustion? Give an example.
Calculate the total heat required
a) to melt 180 g of ice at 0 °C
b) heat it to 100 °C and then
c) vapourise it at that temperature.
[Given: ΔfusH° (ice) = 6.01 kJ mol-1 at 0 °C, ΔvapH° (H2O) = 40.7 kJ mol-1 at 100 °C, Specific heat of water is 4.18 J g-1 K-1]
Define the Standard enthalpy of combustion.
State and explain Hess’s law of constant heat summation.
Calculate the standard enthalpy of combustion of CH4(g) if ΔfH°(CH4) = – 74.8 kJ mol–1, ΔfH°(CO2) = – 393.5 kJ mol–1 and ΔfH°(H2O) = – 285.8 kJ mol–1.
The standard heats of formation for CCl4(g), H2O(g), CO2(g), and HCl(g) are −25.5, −57.8, −94.1 and −22.1 kcal mol−1, respectively.
∆H for the reaction
\[\ce{CCl4_{(g)} + 2H2O_{(g)} -> CO2_{(g)} + 4HCl_{(g)}}\] at 298 K
Daily requirement of energy of a person is 'x' kJ. If heat of combustion of food material (Molecular mass = 100 g) is 'y' kJ, his daily consumption of the food in gram would be ____________.
The heat evolved in the combustion of benzene is given by
\[\ce{C6H6 + 7 1/2O2 -> 6CO2_{(g)} + 3H2O_{(l)}}\]; ΔH = −3264.6 kJ
Which of the following quantities of heat energy will be evolved when 39 g C6H6 are burnt?
Given the reaction,
\[\ce{CH2O_{(g)} + O2_{(g)} -> CO2_{(g)} + H2O_{(g)}}\] ΔH = −527 kJ
How much heat will be evolved in the formation of 60 g of CO2?
Combustion of glucose takes place as
\[\ce{C6H12O6_{(s)} + 6O2_{(g)} -> 6CO2_{(g)} + 6H2O_{(g)}}\]; ΔH = −72 kcal mol−1
The energy needed for the production of 1.8 g of glucose by photosynthesis will be ___________.
Given that,
\[\ce{C_{(s)} + O_{2(g)} -> CO_{2(g)}}\] ΔH° = -X kJ
\[\ce{2CO_{(g)} + O_{2(g)} -> 2CO_{2(g)}}\] ΔH° = - Y kJ, then standard enthalpy of formation of carbon monoxide is ________.
An ideal gas expands isothermally and reversibly from 10 m3 to 20 m3 at 300 K performing 5 .187 kJ of work on surrounding. Calculate number of moles of gas undergoing expansion. (R = 8.314 J K-1 mol-1)
Which of the following equations has ΔfH° and ΔH° same?
Identify the invalid equation.
When the enthalpy of combustion of carbon to carbon dioxide is - 360 kJ mol-1, then the enthalpy change for the formation of 18 g of CO2 from carbon and dioxygen at the same temperature in kJ will be ______.
What is enthalpy of formation of NH3 if bond enthalpies as (N ≡ N) = - 941 kJ/mol.
\[\ce{(H - H)}\] = 436 kJ/mol and \[\ce{(N - H)}\] = 389 kJ/mol?
The enthalpy change that accompanies a reaction in which 1 mole of its standard state is formed from its elements in their standard states
When 0.5 gram of sulphur is burnt to form SO2, 4.6 kJ of heat liberated. Calculate enthalpy of formation of SO2(g). (Atomic mass : S = 32, O = 16)
Define and explain the term, enthalpy of reaction.
For the reaction, aA + bB → cC + dD, write the expression for enthalpy change of reaction in terms of enthalpies of formation of reactants and products.
The enthalpy of combustion of S (rhombic) is − 297 kJ mo1-1. Calculate the amount of sulphur required to produce 29. 74 kJ of heat.
For the reaction, H2 + I2 ⇌ 2HI; ΔH = 12.4 kcal. The heat of formation of HI, ΔHf = ______.
Calculate heat evolved for combustion of 13 gm of acetylene (C2H2).
Given: \[\ce{C2H2_{(g)} + 5/2O_{2(g)}-> 2CO_{2(g)} + H2O_{(l)} \Delta_{(c)}H^{0} = - 1300 kJ}\]