Advertisements
Advertisements
प्रश्न
Answer in brief:
The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?
The distance between two bright fringes in a biprism experiment using light of wavelength 6000 A.U. 0.32 mm. By how much will the distance change, if the light of wavelength 4800 A.U. is used?
उत्तर १
Data: λ1 = 6000 Å = 6 × 10-7 m, λ2 = 4800 Å = 4.8 × 10-7 m, W1 = 0.32 mm = 3.2 × 10-4 m
Distance between consecutive bright fringes,
W = `(lambda "D")/"d"`
For `lambda_1, "W"_1 = (lambda_1"D")/"d"` and ...(1)
For `lambda_2, "W"_2 = (lambda_2"D")/"d"` and ...(2)
`"W"_2/"W"_1 = (lambda_2 "D"//"d")/(lambda_1 "D"//"d") = lambda_2/lambda_1`
`therefore "W"_2 = (lambda_2/lambda_1)"W"_1 = ((4.8 xx 10^-7)/(6 xx 10^-7)) (3.2 xx 10^-4)`
`= (0.8)(3.2 xx 10^-4)`m
`= 2.56 xx 10^-4` m
`therefore triangle "W" = "W"_1 - "W"_2`
= 3.2 × 10-4 m - 2.56 × 10-4 m
= 0.64 × 10-4 m
= 6.4 × 10-5 m
= 0.064 mm
उत्तर २
Given:
Distance between consecutive bright fringes,
yA = 0.32 mm = 0.32 × 10-3 m
λA = 6000 A.U. = 6 × 10-7 m, λB = 4800 A.U. = 4.8 × 10-7 m
Let yB be the distance between consecutive bright fringes when wavelength λB is used
To find: Change in distance between the fringes |yA – yB| Formula: yAλB = yBλA
Calculation:
From formula,
∴ yB = `("y"_"A""y"_"B")/(λ_"A") = (0.32 xx 10^-3 xx 4.8 xx 10^-7)/(6 xx 10^-7)`
= 0.256 × 10-3
∴ Change = |yA – yB|
= = |0.320 × 10-3 - 0.256 × 10-3|
= 0.064 × 10-3 m
= 0.064 mm
The change in distance between the fringes is 0.064 mm.
संबंधित प्रश्न
Draw the sketches to differentiate between plane wavefront and spherical wavefront.
Define a wavefront.
If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.
TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.
Is it necessary to have two waves of equal intensity to study interference pattern? Will there be an effect on clarity if the waves have unequal intensity?
The speed of light depends ____________ .
Which of the following properties of light conclusively support the wave theory of light?
(a) Light obeys the laws of reflection.
(b) Speed of light in water is smaller than its speed in vacuum.
(c) Light shows interference.
(d) Light shows photoelectric effect.
When light propagates in vacuum, there is an electric field as well as a magnetic field. These fields ____________ .
(a) are constant in time
(b) have zero average value
(c) are perpendicular to the direction of propagation of light.
(d) are mutually perpendicular
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Find the range of frequency of light that is visible to an average human being
\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
The speed of yellow light in a certain liquid is 2.4 × 108 m s−1. Find the refractive index of the liquid.
Two narrow slits emitting light in phase are separated by a distance of 1⋅0 cm. The wavelength of the light is \[5 \cdot 0 \times {10}^{- 7} m.\] The interference pattern is observed on a screen placed at a distance of 1.0 m. (a) Find the separation between consecutive maxima. Can you expect to distinguish between these maxima? (b) Find the separation between the sources which will give a separation of 1.0 mm between consecutive maxima.
A parallel beam of light of wavelength 560 nm falls on a thin film of oil (refractive index = 1.4). What should be the minimum thickness of the film so that it strongly reflects the light?
A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.
A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence.
The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is the same as that on travelling a distance x cm through a medium having a refractive index 1.25. Determine the value of x.
Choose the correct option:
In Young's double-slit experiment, the two coherent sources have different intensities. If the ratio of the maximum intensity to the minimum intensity in the interference pattern produced is 25 : 1, what is the ratio of the intensities of the two sources?
A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
The path difference between two waves meeting at a point is (11/4)λ. The phase difference between the two waves is ______
What is the relation between phase difference and Optical path in terms of speed of light in a vacuum?
A Plane Wavefront of light of wavelength 5500 A.U. is incident on two slits in a screen perpendicular to the direction of light rays. If the total separation of 10 bright fringes on a screen 2 m away is 2 cm. Find the distance between the slits.
Two vectors of the same magnitude have a resultant equal to either of the two vectors. The angle between two vectors is
Emission and absorption is best described by ______.
Light appears to travel in straight lines since