हिंदी

Answer in brief: The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 - Physics

Advertisements
Advertisements

प्रश्न

Answer in brief:

The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?

The distance between two bright fringes in a biprism experiment using light of wavelength 6000 A.U. 0.32 mm. By how much will the distance change, if the light of wavelength 4800 A.U. is used? 

योग

उत्तर १

Data: λ1 = 6000 Å = 6 × 10-7 m, λ2 = 4800 Å = 4.8 × 10-7 m, W1 = 0.32 mm = 3.2 × 10-4 m

Distance between consecutive bright fringes,

W = `(lambda "D")/"d"`

For `lambda_1, "W"_1 = (lambda_1"D")/"d"` and    ...(1)

For `lambda_2, "W"_2 = (lambda_2"D")/"d"` and    ...(2)

`"W"_2/"W"_1 = (lambda_2 "D"//"d")/(lambda_1 "D"//"d") = lambda_2/lambda_1`

`therefore "W"_2 = (lambda_2/lambda_1)"W"_1 = ((4.8 xx 10^-7)/(6 xx 10^-7)) (3.2 xx 10^-4)`

`= (0.8)(3.2 xx 10^-4)`m

`= 2.56 xx 10^-4` m

`therefore triangle "W" = "W"_1 - "W"_2`

= 3.2 × 10-4 m - 2.56 × 10-4 m

= 0.64 × 10-4 m

= 6.4 × 10-5 m

= 0.064 mm

shaalaa.com

उत्तर २

Given: 

Distance between consecutive bright fringes,
yA = 0.32 mm = 0.32 × 10-3 m  
λA = 6000 A.U. = 6 × 10-7 m, λB = 4800 A.U. = 4.8 × 10-7 m  
Let yB be the distance between consecutive bright fringes when wavelength λB is used

To find: Change in distance between the fringes |yA – yB| Formula: yAλB = yBλA 

Calculation:

From formula, 

∴ yB = `("y"_"A""y"_"B")/(λ_"A") = (0.32 xx 10^-3 xx 4.8 xx 10^-7)/(6 xx 10^-7)`

= 0.256 × 10-3

∴ Change = |yA – yB

= = |0.320 × 10-3 - 0.256 × 10-3|

= 0.064 × 10-3 m

= 0.064 mm

The change in distance between the fringes is 0.064 mm.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Wave Optics - Short Answer II

APPEARS IN

बालभारती Physics [English] 12 Standard HSC Maharashtra State Board
अध्याय 7 Wave Optics
Exercises | Q 25. | पृष्ठ १८५

संबंधित प्रश्न

Draw the sketches to differentiate between plane wavefront and spherical wavefront.


Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light? Refractive index of water is 1.33.


Define a wavefront.


The wavelength of light in a medium is \[\lambda = \lambda_0 /\mu,\] where \[\lambda \] is the wavelength in vacuum. A beam of red light \[\left( \lambda_0 = 720\text{ nm} \right)\] enters water. The wavelength in water is \[\lambda =  \lambda_0 /\mu = 540\text{ nm.}\] To a person under water, does this light appear green?


If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.


TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.


Light is _______________ .


The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .


An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a   and   \lambda_f,\]


When light propagates in vacuum, there is an electric field as well as a magnetic field. These fields ____________ .

(a) are constant in time

(b) have zero average value

(c) are perpendicular to the direction of propagation of light.

(d) are mutually perpendicular


Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.

(a) \[\nu_A  >  \nu_B  >  \nu_C\]

(b) \[\nu_A  <  \nu_B  <  \nu_C\]

(c) \[\nu_A  =  \nu_B  =  \nu_C\]

(d) \[\nu_B  = \frac{1}{2}\left( \nu_A + \nu_C \right)\]


Find the range of frequency of light that is visible to an average human being

\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]


The wavelength of sodium light in air is 589 nm. (a) Find its frequency in air. (b) Find its wavelength in water (refractive index = 1.33). (c) Find its frequency in water. (d) Find its speed in water.


Two narrow slits emitting light in phase are separated by a distance of 1⋅0 cm. The wavelength of the light is \[5 \cdot 0 \times  {10}^{- 7} m.\] The interference pattern is observed on a screen placed at a distance of 1.0 m. (a) Find the separation between consecutive maxima. Can you expect to distinguish between these maxima? (b) Find the separation between the sources which will give a separation of 1.0 mm between consecutive maxima.


Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.


A parallel beam of light of wavelength 560 nm falls on a thin film of oil (refractive index = 1.4). What should be the minimum thickness of the film so that it strongly reflects the light?


A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.


The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is the same as that on travelling a distance x cm through a medium having a refractive index 1.25. Determine the value of x. 


Answer in brief:

In a double-slit arrangement, the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits.

  1. What is the angular separation in radians between the central maximum and an adjacent maximum?
  2. What is the distance between these maxima on a screen 50.0 cm from the slits?

Choose the correct option:

In Young's double-slit experiment, the two coherent sources have different intensities. If the ratio of the maximum intensity to the minimum intensity in the interference pattern produced is 25 : 1, what is the ratio of the intensities of the two sources?


Choose the correct option:

In Young's double-slit experiment, a thin uniform sheet of glass is kept in front of the two slits, parallel to the screen having the slits. The resulting interference pattern will satisfy:


Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?


Light follows wave nature because ______ 


Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______ 


The path difference between two waves meeting at a point is (11/4)λ. The phase difference between the two waves is ______


Which of the following cannot produce two coherent sources?


What is the relation between phase difference and Optical path in terms of speed of light in a vacuum?


Light appears to travel in straight lines since


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×