Advertisements
Advertisements
प्रश्न
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
विकल्प
WG > WB > WR
WB > WG > WR
WR > WB > WG
WR > WG > WB
उत्तर
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then WR > WG > WB
APPEARS IN
संबंधित प्रश्न
Draw the sketches to differentiate between plane wavefront and spherical wavefront.
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light? Refractive index of water is 1.33.
Define a wavefront.
Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?
If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.
TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.
Is it necessary to have two waves of equal intensity to study interference pattern? Will there be an effect on clarity if the waves have unequal intensity?
Light is _______________ .
The speed of light depends ____________ .
The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .
A light wave can travel
(a) in vacuum
(b) in vacuum only
(c) in a material medium
(d) in a material medium only
Which of the following properties of light conclusively support the wave theory of light?
(a) Light obeys the laws of reflection.
(b) Speed of light in water is smaller than its speed in vacuum.
(c) Light shows interference.
(d) Light shows photoelectric effect.
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
The wavelength of sodium light in air is 589 nm. (a) Find its frequency in air. (b) Find its wavelength in water (refractive index = 1.33). (c) Find its frequency in water. (d) Find its speed in water.
Two narrow slits emitting light in phase are separated by a distance of 1⋅0 cm. The wavelength of the light is \[5 \cdot 0 \times {10}^{- 7} m.\] The interference pattern is observed on a screen placed at a distance of 1.0 m. (a) Find the separation between consecutive maxima. Can you expect to distinguish between these maxima? (b) Find the separation between the sources which will give a separation of 1.0 mm between consecutive maxima.
Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.
Plane microwaves are incident on a long slit of width 5.0 cm. Calculate the wavelength of the microwaves if the first diffraction minimum is formed at θ = 30°.
Answer in brief:
The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?
Choose the correct option:
In Young's double-slit experiment, the two coherent sources have different intensities. If the ratio of the maximum intensity to the minimum intensity in the interference pattern produced is 25 : 1, what is the ratio of the intensities of the two sources?
A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
When light travels from an optically rarer medium to an optically denser medium, the speed decreases because of change in ______
What is the relation between phase difference and Optical path in terms of speed of light in a vacuum?
Emission and absorption is best described by ______.
A ray is an imaginary line ______.