हिंदी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान कक्षा ११

Is It Necessary to Have Two Waves of Equal Intensity to Study Interference Pattern? Will There Be an Effect on Clarity If the Waves Have Unequal Intensity? - Physics

Advertisements
Advertisements

प्रश्न

Is it necessary to have two waves of equal intensity to study interference pattern? Will there be an effect on clarity if the waves have unequal intensity?

संक्षेप में उत्तर

उत्तर

Interference pattern can be studied with waves of unequal intensity.

\[I =I_1 + I_2 + 2\sqrt{\left[ I_1 \times I_2 \right]}\cos\left( \phi \right),\]

where

\[\phi =\text{ phase difference}\]

In case of waves of unequal intensities, the contrast will not be clear, as the minima will not be completely dark.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Light Waves - Short Answers [पृष्ठ ३७९]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
अध्याय 17 Light Waves
Short Answers | Q 7 | पृष्ठ ३७९

संबंधित प्रश्न

Draw the sketches to differentiate between plane wavefront and spherical wavefront.


Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light? Refractive index of water is 1.33.


Define a wavefront.


Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?


TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.


The speed of light depends ____________ .


Which of the following properties of light conclusively support the wave theory of light?

(a) Light obeys the laws of reflection.

(b) Speed of light in water is smaller than its speed in vacuum.

(c) Light shows interference.

(d) Light shows photoelectric effect.


Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.

(a) \[\nu_A  >  \nu_B  >  \nu_C\]

(b) \[\nu_A  <  \nu_B  <  \nu_C\]

(c) \[\nu_A  =  \nu_B  =  \nu_C\]

(d) \[\nu_B  = \frac{1}{2}\left( \nu_A + \nu_C \right)\]


Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.

(a) \[\nu_A  >  \nu_B  >  \nu_C\]

(b) \[\nu_A  <  \nu_B  <  \nu_C\]

(c) \[\nu_A  =  \nu_B  =  \nu_C\]

(d) \[\nu_B  = \frac{1}{2}\left( \nu_A + \nu_C \right)\]


Two narrow slits emitting light in phase are separated by a distance of 1⋅0 cm. The wavelength of the light is \[5 \cdot 0 \times  {10}^{- 7} m.\] The interference pattern is observed on a screen placed at a distance of 1.0 m. (a) Find the separation between consecutive maxima. Can you expect to distinguish between these maxima? (b) Find the separation between the sources which will give a separation of 1.0 mm between consecutive maxima.


Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.


A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.


The optical path of a ray of light of a given wavelength travelling a distance of 3 cm in flint glass having refractive index 1.6 is the same as that on travelling a distance x cm through a medium having a refractive index 1.25. Determine the value of x. 


Answer in brief:

The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?


White light consists of wavelengths from 400 nm to 700 nm. What will be the wavelength range seen when white light is passed through a glass of refractive index 1.55?


A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?


Which of the following cannot produce two coherent sources?


A ray is an imaginary line ______.


State the theories which were proposed to explain nature of light.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×