Advertisements
Advertisements
प्रश्न
Which of the following cannot produce two coherent sources?
विकल्प
Lloyd’s mirror
Fresnel biprism
Young’s double-slit
Prism
उत्तर
Prism
APPEARS IN
संबंधित प्रश्न
Draw the sketches to differentiate between plane wavefront and spherical wavefront.
Define a wavefront.
If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.
Light is _______________ .
The speed of light depends ____________ .
An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a and \lambda_f,\]
The inverse square law of intensity \[\left(\text{i.e. the intensity }\infty \frac{1}{r^2}\right)\] is valid for a ____________ .
Which of the following properties of light conclusively support the wave theory of light?
(a) Light obeys the laws of reflection.
(b) Speed of light in water is smaller than its speed in vacuum.
(c) Light shows interference.
(d) Light shows photoelectric effect.
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Find the range of frequency of light that is visible to an average human being
\[\left( 400\text{ nm }< \lambda < 700\text{ nm}\right)\]
A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.
A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence.
Answer in brief:
In a double-slit arrangement, the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits.
- What is the angular separation in radians between the central maximum and an adjacent maximum?
- What is the distance between these maxima on a screen 50.0 cm from the slits?
A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
When light travels from an optically rarer medium to an optically denser medium, the speed decreases because of change in ______
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
The path difference between two waves meeting at a point is (11/4)λ. The phase difference between the two waves is ______
A Plane Wavefront of light of wavelength 5500 A.U. is incident on two slits in a screen perpendicular to the direction of light rays. If the total separation of 10 bright fringes on a screen 2 m away is 2 cm. Find the distance between the slits.
State any four Conditions for Obtaining well–defined and Steady Interference Patterns.
Two vectors of the same magnitude have a resultant equal to either of the two vectors. The angle between two vectors is
Emission and absorption is best described by ______.
State the theories which were proposed to explain nature of light.