मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Which of the following cannot produce two coherent sources? - Physics

Advertisements
Advertisements

प्रश्न

Which of the following cannot produce two coherent sources?

पर्याय

  • Lloyd’s mirror

  • Fresnel biprism

  • Young’s double-slit

  • Prism

MCQ

उत्तर

Prism

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Wave Optics - MCQ’s

संबंधित प्रश्‍न

The wavelength of light in a medium is \[\lambda = \lambda_0 /\mu,\] where \[\lambda \] is the wavelength in vacuum. A beam of red light \[\left( \lambda_0 = 720\text{ nm} \right)\] enters water. The wavelength in water is \[\lambda =  \lambda_0 /\mu = 540\text{ nm.}\] To a person under water, does this light appear green?


Is it necessary to have two waves of equal intensity to study interference pattern? Will there be an effect on clarity if the waves have unequal intensity?


Light is _______________ .


The speed of light depends ____________ .


The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .


An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a   and   \lambda_f,\]


Which of the following properties of light conclusively support the wave theory of light?

(a) Light obeys the laws of reflection.

(b) Speed of light in water is smaller than its speed in vacuum.

(c) Light shows interference.

(d) Light shows photoelectric effect.


Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.

(a) \[\nu_A  >  \nu_B  >  \nu_C\]

(b) \[\nu_A  <  \nu_B  <  \nu_C\]

(c) \[\nu_A  =  \nu_B  =  \nu_C\]

(d) \[\nu_B  = \frac{1}{2}\left( \nu_A + \nu_C \right)\]


Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.

(a) \[\nu_A  >  \nu_B  >  \nu_C\]

(b) \[\nu_A  <  \nu_B  <  \nu_C\]

(c) \[\nu_A  =  \nu_B  =  \nu_C\]

(d) \[\nu_B  = \frac{1}{2}\left( \nu_A + \nu_C \right)\]


Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.


A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.


A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence.


Answer in brief:

In a double-slit arrangement, the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits.

  1. What is the angular separation in radians between the central maximum and an adjacent maximum?
  2. What is the distance between these maxima on a screen 50.0 cm from the slits?

Choose the correct option:

In Young's double-slit experiment, the two coherent sources have different intensities. If the ratio of the maximum intensity to the minimum intensity in the interference pattern produced is 25 : 1, what is the ratio of the intensities of the two sources?


Choose the correct option:

In Young's double-slit experiment, a thin uniform sheet of glass is kept in front of the two slits, parallel to the screen having the slits. The resulting interference pattern will satisfy:


Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?


When light travels from an optically rarer medium to an optically denser medium, the speed decreases because of change in ______ 


Light follows wave nature because ______ 


Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______ 


The path difference between two waves meeting at a point is (11/4)λ. The phase difference between the two waves is ______


State any four Conditions for Obtaining well–defined and Steady Interference Patterns. 


Light behaves as _________.


Emission and absorption is best described by ______.


A ray is an imaginary line ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×