Advertisements
Advertisements
प्रश्न
Choose the correct option:
In Young's double-slit experiment, a thin uniform sheet of glass is kept in front of the two slits, parallel to the screen having the slits. The resulting interference pattern will satisfy:
पर्याय
The interference pattern will remain unchanged
The fringe width will decrease
The fringe width will increase
The fringes will shift
उत्तर
The interference pattern will remain unchanged
Explanation:
When a barrier is placed before the slits, the only effect that comes is the slowing down of the particle in the sheet of material due to its refractive index. As the glass sheet is placed before both the slits, this change will be even. And hence there is no change in the resultant interference pattern.
APPEARS IN
संबंधित प्रश्न
Draw the sketches to differentiate between plane wavefront and spherical wavefront.
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light? Refractive index of water is 1.33.
Define a wavefront.
Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?
The wavelength of light in a medium is \[\lambda = \lambda_0 /\mu,\] where \[\lambda \] is the wavelength in vacuum. A beam of red light \[\left( \lambda_0 = 720\text{ nm} \right)\] enters water. The wavelength in water is \[\lambda = \lambda_0 /\mu = 540\text{ nm.}\] To a person under water, does this light appear green?
TV signals broadcast by a Delhi studio cannot be directly received at Patna, which is about 1000 km away. But the same signal goes some 36000 km away to a satellite, gets reflected and is then received at Patna. Explain.
Light is _______________ .
An amplitude modulated (AM) radio wave bends appreciably round the corners of a 1 m × 1 m board but a frequency modulated (FM) wave only bends negligibly. If the average wavelengths of the AM and FM waves are \[\lambda_a and \lambda_f,\]
A light wave can travel
(a) in vacuum
(b) in vacuum only
(c) in a material medium
(d) in a material medium only
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
The speed of yellow light in a certain liquid is 2.4 × 108 m s−1. Find the refractive index of the liquid.
Two narrow slits emitting light in phase are separated by a distance of 1⋅0 cm. The wavelength of the light is \[5 \cdot 0 \times {10}^{- 7} m.\] The interference pattern is observed on a screen placed at a distance of 1.0 m. (a) Find the separation between consecutive maxima. Can you expect to distinguish between these maxima? (b) Find the separation between the sources which will give a separation of 1.0 mm between consecutive maxima.
Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.
A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.
A glass surface is coated by an oil film of uniform thickness 1.00 × 10−4 cm. The index of refraction of the oil is 1.25 and that of the glass is 1.50. Find the wavelengths of light in the visible region (400 nm − 750 nm) which are completely transmitted by the oil film under normal incidence.
Answer in brief:
In a double-slit arrangement, the slits are separated by a distance equal to 100 times the wavelength of the light passing through the slits.
- What is the angular separation in radians between the central maximum and an adjacent maximum?
- What is the distance between these maxima on a screen 50.0 cm from the slits?
A parallel beam of green light of wavelength 550 nm passes through a slit of width 0.4 mm. The intensity pattern of the transmitted light is seen on a screen that is 40 cm away. What is the distance between the two first-order minima?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
Which of the following cannot produce two coherent sources?
What is the relation between phase difference and Optical path in terms of speed of light in a vacuum?
State any four Conditions for Obtaining well–defined and Steady Interference Patterns.
Two vectors of the same magnitude have a resultant equal to either of the two vectors. The angle between two vectors is
Light behaves as _________.
A ray is an imaginary line ______.
Light appears to travel in straight lines since