Advertisements
Advertisements
प्रश्न
Plane microwaves are incident on a long slit of width 5.0 cm. Calculate the wavelength of the microwaves if the first diffraction minimum is formed at θ = 30°.
उत्तर
Given:-
Width of the slit, b = 5.0 cm
First diffraction minimum is formed at θ = 30°.
For the diffraction minima, we have
`bsinθ = nλ`
For the first minima, we put n = 1.
\[5 \times \sin30^\circ = 1 \times \lambda\]
\[ \Rightarrow \lambda = \frac{5}{2} = 2 . 5 cm\]
Therefore, the wavelength of the microwaves is 2.5 cm.
APPEARS IN
संबंधित प्रश्न
Monochromatic light of wavelength 589 nm is incident from air on a water surface. What are the wavelength, frequency and speed of (a) reflected and (b) refracted light? Refractive index of water is 1.33.
Is the colour of 620 nm light and 780 nm light same? Is the colour of 620 nm light and 621 nm light same? How many colours are there in white light?
If we put a cardboard (say 20 cm × 20 cm) between a light source and our eyes, we can't see the light. But when we put the same cardboard between a sound source and out ear, we hear the sound almost clearly. Explain.
The speed of light depends ____________ .
The equation of a light wave is written as \[y = A \sin\left( kx - \omega t \right).\] Here, `y` represents _______ .
A light wave can travel
(a) in vacuum
(b) in vacuum only
(c) in a material medium
(d) in a material medium only
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is vacuum everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
Three observers A, B and C measure the speed of light coming from a source to be νA, νBand νC. A moves towards the source and C moves away from the source at the same speed. B remains stationary. The surrounding space is water everywhere.
(a) \[\nu_A > \nu_B > \nu_C\]
(b) \[\nu_A < \nu_B < \nu_C\]
(c) \[\nu_A = \nu_B = \nu_C\]
(d) \[\nu_B = \frac{1}{2}\left( \nu_A + \nu_C \right)\]
The wavelength of sodium light in air is 589 nm. (a) Find its frequency in air. (b) Find its wavelength in water (refractive index = 1.33). (c) Find its frequency in water. (d) Find its speed in water.
Find the thickness of a plate which will produce a change in optical path equal to half the wavelength λ of the light passing through it normally. The refractive index of the plate is μ.
A parallel beam of white light is incident normally on a water film 1.0 × 10−4 cm thick. Find the wavelengths in the visible range (400 nm − 700 nm) which are strongly transmitted by the film. Refractive index of water = 1.33.
Answer in brief:
The distance between two consecutive bright fringes in a biprism experiment using the light of wavelength 6000 Å is 0.32 mm by how much will the distance change if light of wavelength 4800 Å is used?
Monochromatic electromagnetic radiation from a distant source passes through a slit. The diffraction pattern is observed on a screen 2.50 m from the slit. If the width of the central maximum is 6.00 mm, what is the slit width if the wavelength is
(a) 500 nm (visible light)
(b) 50 µm (infrared radiation)
(c) 0.500 nm (X rays)?
Young’s double-slit experiment is carried out using green, red and blue light, one colour at a time. The fringe widths recorded are WG, WR, and WB respectively then ______
The path difference between two waves meeting at a point is (11/4)λ. The phase difference between the two waves is ______
Which of the following cannot produce two coherent sources?
Emission and absorption is best described by ______.
A ray is an imaginary line ______.
Light appears to travel in straight lines since
State the theories which were proposed to explain nature of light.