मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following question: Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

Find the co-ordinates of the foot of the perpendicular drawn from the point P(−1, 3) the line 3x − 4y − 16 = 0

आकृती
बेरीज

उत्तर


Let M be the foot of perpendicular drawn from P(–1, 3) to the line

3x – 4y – 16 = 0   ...(i) 

Slope of the line 3x – 4y – 16 = 0 is

`(-3)/(-4) = 3/4`

Since PM ⊥ to line (i),

slope of PM = `(-4)/3`

∴ Equation of PM is

y – 3 = `(-4)/3(x + 1)`

∴ 3(y – 3) = –4(x + 1)

∴ 3y – 9 = – 4x – 4

∴ 4x +  3y – 5 = 0  ...(ii)

The foot of perpendicular i.e., point M, is the point of intersection of equation (i) and (ii).

By (i) x 3 + (ii) x 4, we get

25x = 68

∴ x = `68/25`

Substituting x = `68/25` in (ii), we get

`4(68/25) + 3y - 5` = 0

∴ 3y = `5 - 4(68/25) = (125 - 272)/25 = (-147)/25`

∴ y = `(-49)/25`

∴ The co-ordinates of the foot of perpendicular M are `(68/25, (-49)/25)`.

shaalaa.com
Equations of Line in Different Forms
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Straight Line - Miscellaneous Exercise 5 [पृष्ठ १२६]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 5 Straight Line
Miscellaneous Exercise 5 | Q II. (26) | पृष्ठ १२६

संबंधित प्रश्‍न

Find the equation of the line passing through the points P(2, 1) and Q(2, –1)


Find the equation of the line having slope `1/2` and containing the point (3, −2).


Find the equation of the line containing point A(3, 5) and having slope `2/3`.


Find the equation of the line passing through the origin and which bisects the portion of the line 3x + y = 6 intercepted between the co-ordinate axes.


The vertices of a triangle are A(3, 4), B(2, 0), and C(−1, 6). Find the equation of the line containing the median AD


Find the x and y intercept of the following line:

`x/3 + y/2` = 1


Find the x and y intercept of the following line:

`(3x)/2 + (2y)/3` = 1


Find the x and y intercept of the following line:

2x − 3y + 12 = 0


Find equations of lines which contains the point A(1, 3) and the sum of whose intercepts on the coordinate axes is zero.


Find equations of altitudes of the triangle whose vertices are A(2, 5), B(6, –1) and C(–4, –3).


Find the coordinates of the orthocenter of the triangle whose vertices are A(2, −2), B(1, 1), and C(−1, 0).


N(3, −4) is the foot of the perpendicular drawn from the origin to line L. Find the equation of line L.


Select the correct option from the given alternatives:

If the point (1, 1) lies on the line passing through the points (a, 0) and (0, b), then `1/"a" + 1/"b"` =


Select the correct option from the given alternatives:

The equation of the line through (1, 2), which makes equal intercepts on the axes, is


Answer the following question:

Does point A(2, 3) lie on the line 3x + 2y – 6 = 0? Give reason.


Answer the following question:

Obtain the equation of the line containing the point (2, 3) and parallel to the X-axis.


Answer the following question:

Obtain the equation of the line containing the point (2, 4) and perpendicular to the Y−axis


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6). Find equations of the sides.


Answer the following question:

The vertices of a triangle are A(1, 4), B(2, 3) and C(1, 6) Find equations of altitudes of ∆ABC


Answer the following question:

Find the X−intercept of the line whose slope is 3 and which makes intercept 4 on the Y−axis


Answer the following question:

Find the Y-intercept of the line whose slope is 4 and which has X intercept 5


Answer the following question:

A(1, 4), B(2, 3) and C(1, 6) are vertices of ∆ABC. Find the equation of the altitude through B and hence find the co-ordinates of the point where this altitude cuts the side AC of ∆ABC.


Answer the following question:

A line perpendicular to segment joining A(1, 0) and B(2, 3) divides it internally in the ratio 1 : 2. Find the equation of the line.


Answer the following question:

The perpendicular from the origin to a line meets it at (−2, 9). Find the equation of the line.


If for a plane, the intercepts on the co-ordinate axes are 8, 4, 4, then the length of the perpendicular from the origin to the plane is ______


The lines `(x + 1)/(-10) = (y + 3)/-1 = (z - 4)/1` and `(x + 10)/(-1) = (y + 1)/-3 = (z - 1)/4` intersect at the point ______ 


A Plane cuts the coordinate axes X, Y, Z at A, B, C respectively such that the centroid of the Δ ABC is (6, 6, 3). Then the equation of that plane is ______.


The line L given by `x/5+y/b=1` passes through the point (13, 32). The line K is parallel to L and its equation is `x/c+y/3=1`. Then, the distance between L and K is ______.


N(3, – 4) is the foot of the perpendicular drawn from the origin to a line L. Then, the equation of the line L is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×