मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following question: If A = [cosθsinθ-sinθcosθ], prove that An = [cosnθsinnθ-sinnθcosnθ], for all n ∈ N - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following question:

If A = [cosθsinθ-sinθcosθ], prove that An = [cosnθsinnθ-sinnθcosnθ], for all n ∈ N

बेरीज

उत्तर

A = [cosθsinθ-sinθcosθ]

Let P(n) ≡ An = [cosnθsinnθ-sinnθcosnθ], for all n ∈ N.

Put n = 1

∴ R.H.S. = [cosθsinθ-sinθcosθ] = A = L.H.S.

∴ P(n) is true for n = 1.

Let us consider that P(n) is true for n = k.

∴ AK = [coskθsinkθ-sinkθcoskθ]   ...(i)

We have to prove that P(n) is true for
n = k + 1,

i.e., to prove that

Ak+1 = [cos(k+1)θsin(k+1)θ-sin(k+1)θcos(k+1)θ]

R.H.S. = [cos(k+1)θsin(k+1)θ-sin(k+1)θcos(k+1)θ]

L.H.S. = Ak+1 = Ak.A

= [coskθsinkθ-sinkθcoskθ][cosθsinθ-sinθcosθ]  ...[From (i)]

= [coskθcosθ-sinkθsinθcoskθsinθ+sinkθcosθ-sinkθcosθ-coskθsinθ-sinkθsinθ+coskθcosθ]

= [coskθcosθ-sinkθsinθsinkθcosθ+coskθsinθ-(sinkθcosθ+coskθsinθ)coskθcosθ-sinkθsinθ]

= [cos(kθ+θ)sin(kθ+θ)-sin(kθ+θ)cos(kθ+θ)]

= [cos(k+1)θsin(k+1)θ-sin(k+1)θcos(k+1)θ]

= R.H.S. 

∴ P(n) is true for n = k + 1.

From all steps above, by the principle of Mathematical induction, P(n) is true for all n ∈ N.

∴ An = [cosnθsinnθ-sinnθcosnθ] for all n ∈ N.

shaalaa.com
Matrices - Properties of Transpose of a Matrix
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Determinants and Matrices - Miscellaneous Exercise 4(B) [पृष्ठ १०२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 4 Determinants and Matrices
Miscellaneous Exercise 4(B) | Q II. (24) | पृष्ठ १०२

संबंधित प्रश्‍न

Find AT, if A = [13-45]


Find AT, if A = [2-61-405]


If A = [5-34-3-21], Prove that (2A)T = 2AT 


If A = [12-52-34-549], Prove that (3A)T = 3AT 


If A = [01+2ii-2-1-2i0-72-i70] where i = -1 Prove that AT = – A


If A = [2-35-4-61], B = [214-1-33] and C = [12-14-23] then show that (A – C)T = AT – CT 


If A = [73004-2], B = [0-2321-4] then find AT + 4BT


If A = [73004-2], B = [0-2321-4] then find 5AT – 5BT


If A = [101312], B = [21-435-2] and C = [023-1-10], verify that (A + 2B + 3C)T = AT + 2BT + 3CT


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where 

A = [124321-2-32]


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

[33-1-2-21-4-52]


If A = [2-13-241] and B = [03-42-11], verify that  (AB)T = BT AT 


If A = [2-13-241] and B = [03-42-11], verify that (BA)T = AT BT


Select the correct option from the given alternatives:

Consider the matrices A = [46-13021-25], B = [2401-12], C = [312] out of the given matrix product ________

i) (AB)TC
ii) CTC(AB) 
iii) CTAB
iv) ATABBTC


Select the correct option from the given alternatives:

If A = [α22α] and |A3| = 125, then α = _______


Select the correct option from the given alternatives:

For suitable matrices A, B, the false statement is _____


Answer the following question:

If A = [2-33-2-14], B = [-3412-1-3] Verify (A + 2BT)T = AT + 2B


Answer the following question:

If A = [2-33-2-14], B = [-3412-1-3] Verify (3A - 5BT)T = 3AT – 5B


Answer the following question:

If A = [cosα-sinαsinαcosα] and A + AT = I, where I is unit matrix 2 × 2, then find the value of α


Answer the following question:

If A = [21-3026], B = [10-23-14], find ABT and ATB


Answer the following question:

If A = [2-43-201], B = [1-12-210], show that (AB)T = BTAT


Answer the following question:

If A = [3-41-1], prove that An = [1+2n-4nn1-2n], for all n ∈ N


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.