English

Answer the following question: If A = [cosθsinθ-sinθcosθ], prove that An = [cosnθsinnθ-sinnθcosnθ], for all n ∈ N - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following question:

If A = `[(costheta, sintheta),(-sintheta, costheta)]`, prove that An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N

Sum

Solution

A = `[(costheta, sintheta),(-sintheta, costheta)]`

Let P(n) ≡ An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N.

Put n = 1

∴ R.H.S. = `[(costheta, sintheta),(-sintheta, costheta)]` = A = L.H.S.

∴ P(n) is true for n = 1.

Let us consider that P(n) is true for n = k.

∴ AK = `[(cos"k"theta, sin"k"theta),(-sin"k"theta, cos"k"theta)]`   ...(i)

We have to prove that P(n) is true for
n = k + 1,

i.e., to prove that

Ak+1 = `[(cos("k" + 1)theta , sin("k" + 1)theta),(-sin("k" + 1)theta, cos("k" + 1)theta)]`

R.H.S. = `[(cos("k" + 1)theta , sin("k" + 1)theta),(-sin("k" + 1)theta, cos("k" + 1)theta)]`

L.H.S. = Ak+1 = Ak.A

= `[(cos"k"theta, sin"k"theta),(-sin"k"theta, cos"k"theta)] [(costheta, sintheta),(-sintheta, costheta)]`  ...[From (i)]

= `[(cos"k"theta costheta - sin"k"theta sintheta, cos"k"theta sintheta + sin"k"theta costheta),(-sin"k"theta costheta - cos"k"theta sintheta, -sin"k"theta sintheta + cos"k"theta costheta)]`

= `[(cos"k"theta costheta - sin"k"theta sintheta, sin"k" theta costheta + cos"k"theta sintheta),(-(sin"k"theta costheta + cos"k"theta sintheta), cos"k"theta costheta - sin"k"theta sintheta)]`

= `[(cos("k"theta + theta), sin("k"theta + theta)),(-sin("k"theta + theta), cos("k"theta + theta))]`

= `[(cos("k" + 1)theta, sin("k" + 1)theta),(-sin("k" + 1)theta, cos("k" + 1)theta)]`

= R.H.S. 

∴ P(n) is true for n = k + 1.

From all steps above, by the principle of Mathematical induction, P(n) is true for all n ∈ N.

∴ An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]` for all n ∈ N.

shaalaa.com
Matrices - Properties of Transpose of a Matrix
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Miscellaneous Exercise 4(B) [Page 102]

APPEARS IN

Balbharati Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 4 Determinants and Matrices
Miscellaneous Exercise 4(B) | Q II. (24) | Page 102

RELATED QUESTIONS

Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices?


If A = `[(5, -3),(4, -3),(-2, 1)]`, Prove that (2A)T = 2AT 


If A = `[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]` where i = `sqrt(-1)` Prove that AT = – A


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A + B)T = AT + BT


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A – C)T = AT – CT 


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find AT + 4BT


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find 5AT – 5BT


If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where 

A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where

A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(4, -2),(3, -5)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`


If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = AT BT


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, show that ATA = I, where I is the unit matrix of order 2


Select the correct option from the given alternatives:

Consider the matrices A = `[(4, 6, -1),(3, 0, 2),(1, -2, 5)]`, B = `[(2, 4),(0, 1),(-1, 2)]`, C = `[(3),(1),(2)]` out of the given matrix product ________

i) (AB)TC
ii) CTC(AB) 
iii) CTAB
iv) ATABBTC


Select the correct option from the given alternatives:

If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ________


Select the correct option from the given alternatives:

If A = `[(alpha, 2),(2, alpha)]` and |A3| = 125, then α = _______


Select the correct option from the given alternatives:

For suitable matrices A, B, the false statement is _____


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (A + 2BT)T = AT + 2B


Answer the following question:

If A = `[(cosalpha, -sinalpha),(sinalpha, cosalpha)]` and A + AT = I, where I is unit matrix 2 × 2, then find the value of α


Answer the following question:

If A = `[(2, 1, -3),(0, 2, 6)]`, B = `[(1, 0, -2),(3, -1, 4)]`, find ABT and ATB


Answer the following question:

If A = `[(2, -4),(3, -2),(0, 1)]`, B = `[(1, -1, 2),(-2, 1, 0)]`, show that (AB)T = BTAT


Answer the following question:

If A = `[(3, -4),(1, -1)]`, prove that An = `[(1 + 2"n", -4"n"),("n", 1 - 2"n")]`, for all n ∈ N


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×