Advertisements
Advertisements
Question
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where
A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
Solution
A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`
∴ AT = `[(1, 3, -2),(2, 2, -3),(4, 1, 2)]`
∴ A + AT = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)] + [(1, 3, -2),(2, 2, -3),(4, 1, 2)]`
= `[(1 + 1, 2 + 3, 4 - 2),(3 + 2, 2 + 2, 1 - 3),(-2 + 4, -3 + 1, 2 + 2)]`
= `[(2, 5, 2),(5, 4, -2),(2, -2, 4)]`
∴ (A + AT)T = `[(2, 5, 2),(5, 4, -2),(2, -2, 4)]`
∴ (A + AT)T = A + AT
∴ A + AT is symmetric matrix.
Also, A – AT = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)] - [(1, 3, -2),(2, 2, -3),(4, 1, 2)]`
= `[(1 - 1, 2 - 3, 4 - (-2)),(3 - 2, 2 - 2, 1 - (-3)),(-2 - 4, -3 - 1, 2 - 2)]`
= `[(0, -1, 6),(1, 0, 4),(-6, -4, 0)]`
∴ (A – AT)T = `[(0, 1, -6),(-1, 0, -4),(6, 4, 0)]`
and – (A – AT) = `- [(0, -1, 6),(1, 0, 4),(-6, -4, 0)]`
= `[(0, 1, -6),(-1, 0, -4),(6, 4, 0)]`
∴ (A – AT)T = – (A – AT)
∴ A – AT is a skew-symmetric matrix.
APPEARS IN
RELATED QUESTIONS
Find AT, if A = `[(1, 3),(-4, 5)]`
Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`
If [aij]3×3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices?
If A = `[(5, -3),(4, -3),(-2, 1)]`, Prove that (2A)T = 2AT
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, Prove that (3A)T = 3AT
If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A + B)T = AT + BT
If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A – C)T = AT – CT
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2
If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find AT + 4BT
If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT
If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where
A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`
Express the following matrix as the sum of a symmetric and a skew symmetric matrix
`[(4, -2),(3, -5)]`
Express the following matrix as the sum of a symmetric and a skew symmetric matrix
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = AT BT
Select the correct option from the given alternatives:
Consider the matrices A = `[(4, 6, -1),(3, 0, 2),(1, -2, 5)]`, B = `[(2, 4),(0, 1),(-1, 2)]`, C = `[(3),(1),(2)]` out of the given matrix product ________
i) (AB)TC
ii) CTC(AB)T
iii) CTAB
iv) ATABBTC
Select the correct option from the given alternatives:
If A = `[(alpha, 2),(2, alpha)]` and |A3| = 125, then α = _______
Select the correct option from the given alternatives:
For suitable matrices A, B, the false statement is _____
Answer the following question:
If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (3A - 5BT)T = 3AT – 5B
Answer the following question:
If A = `[(cosalpha, -sinalpha),(sinalpha, cosalpha)]` and A + AT = I, where I is unit matrix 2 × 2, then find the value of α
Answer the following question:
If A = `[(2, -4),(3, -2),(0, 1)]`, B = `[(1, -1, 2),(-2, 1, 0)]`, show that (AB)T = BTAT
Answer the following question:
If A = `[(3, -4),(1, -1)]`, prove that An = `[(1 + 2"n", -4"n"),("n", 1 - 2"n")]`, for all n ∈ N
Answer the following question:
If A = `[(costheta, sintheta),(-sintheta, costheta)]`, prove that An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N