Advertisements
Advertisements
Question
Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where
A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`
Solution
A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`
∴ AT = `[(5, 3, 4),(2, -7, -5),(-4, 2, -3)]`
∴ A + AT = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)] + [(5, 3, 4),(2, -7, -5),(-4, 2, -3)]`
= `[(5 + 5, 2 + 3, -4 + 4),(3 + 2, -7 - 7, 2 - 5),(4 - 4, -5 + 2, -3 - 3)]`
∴ A + AT = `[(10, 5, 0),(5, -14, -3),(0, -3, -6)]`
∴ (A + AT)T = `[(10, 5, 0),(5, -14, -3),(0, -3, -6)]`
∴ (A + AT)T = A + AT , i.e., A + AT = (A + AT)T
∴ A + AT is symmetric matrix.
Also, A – AT = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)] - [(5, 3, 4),(2, -7, -5),(-4, 2, -3)]`
= `[(5 - 5, 2 - 3, -4 - 4),(3 - 2, -7 + 7, 2 + 5),(4 + 4, -5 - 2, -3 + 3)]`
= `[(0, -1, -8),(1, 0, 7),(8, -7, 0)]`
∴ (A – AT)T = `[(0, 1, 8),(-1, 0, -7),(-8, 7, 0)]`
= `-[(0, -1, -8),(1, 0, 7),(8, -7, 0)]`
∴ (A – AT)T = – (A – AT),
i.e., A – AT = (A – AT)T
∴ A – AT is a skew-symmetric matrix.
APPEARS IN
RELATED QUESTIONS
Find AT, if A = `[(1, 3),(-4, 5)]`
If [aij]3×3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices?
If A = `[(5, -3),(4, -3),(-2, 1)]`, Prove that (2A)T = 2AT
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, Prove that (3A)T = 3AT
If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A + B)T = AT + BT
If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A – C)T = AT – CT
If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2
If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find AT + 4BT
If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find 5AT – 5BT
If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT
If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B
Express the following matrix as the sum of a symmetric and a skew symmetric matrix
`[(4, -2),(3, -5)]`
Express the following matrix as the sum of a symmetric and a skew symmetric matrix
`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`
If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (AB)T = BT AT
If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = AT BT
If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, show that ATA = I, where I is the unit matrix of order 2
Select the correct option from the given alternatives:
If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ________
Select the correct option from the given alternatives:
If A = `[(alpha, 2),(2, alpha)]` and |A3| = 125, then α = _______
Answer the following question:
If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (3A - 5BT)T = 3AT – 5B
Answer the following question:
If A = `[(cosalpha, -sinalpha),(sinalpha, cosalpha)]` and A + AT = I, where I is unit matrix 2 × 2, then find the value of α
Answer the following question:
If A = `[(2, 1, -3),(0, 2, 6)]`, B = `[(1, 0, -2),(3, -1, 4)]`, find ABT and ATB
Answer the following question:
If A = `[(2, -4),(3, -2),(0, 1)]`, B = `[(1, -1, 2),(-2, 1, 0)]`, show that (AB)T = BTAT
Answer the following question:
If A = `[(3, -4),(1, -1)]`, prove that An = `[(1 + 2"n", -4"n"),("n", 1 - 2"n")]`, for all n ∈ N
Answer the following question:
If A = `[(costheta, sintheta),(-sintheta, costheta)]`, prove that An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N