हिंदी

Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where A = [52-43-724-5-3] - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where

A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`

योग

उत्तर

A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`

∴ AT = `[(5, 3, 4),(2, -7, -5),(-4, 2, -3)]`

∴ A + AT = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)] + [(5, 3, 4),(2, -7, -5),(-4, 2, -3)]`

= `[(5 + 5, 2 + 3, -4 + 4),(3 + 2, -7 - 7, 2 - 5),(4 - 4, -5 + 2, -3 - 3)]`

∴ A + AT = `[(10, 5, 0),(5, -14, -3),(0, -3, -6)]`

∴ (A + AT)T = `[(10, 5, 0),(5, -14, -3),(0, -3, -6)]`

∴ (A + AT)T = A + AT , i.e., A + AT = (A + AT)T 

∴ A + AT is symmetric matrix.

Also, A – AT = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)] - [(5, 3, 4),(2, -7, -5),(-4, 2, -3)]`

= `[(5 - 5, 2 - 3, -4 - 4),(3 - 2, -7 + 7, 2 + 5),(4 + 4, -5 - 2, -3 + 3)]`

= `[(0, -1, -8),(1, 0, 7),(8, -7, 0)]`

∴ (A – AT)T = `[(0, 1, 8),(-1, 0, -7),(-8, 7, 0)]`

= `-[(0, -1, -8),(1, 0, 7),(8, -7, 0)]`

∴  (A – AT)T = – (A – AT),

i.e., A – AT = (A – AT)T 

∴ A – AT is a skew-symmetric matrix.

shaalaa.com
Matrices - Properties of Transpose of a Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Exercise 4.7 [पृष्ठ ९८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Exercise 4.7 | Q 11. (ii) | पृष्ठ ९८

संबंधित प्रश्न

Find AT, if A = `[(1, 3),(-4, 5)]`


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices?


If A = `[(5, -3),(4, -3),(-2, 1)]`, Prove that (2A)T = 2AT 


If A = `[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]` where i = `sqrt(-1)` Prove that AT = – A


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A + B)T = AT + BT


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find AT + 4BT


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find 5AT – 5BT


If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where 

A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(4, -2),(3, -5)]`


If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that  (AB)T = BT AT 


If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = AT BT


Select the correct option from the given alternatives:

Consider the matrices A = `[(4, 6, -1),(3, 0, 2),(1, -2, 5)]`, B = `[(2, 4),(0, 1),(-1, 2)]`, C = `[(3),(1),(2)]` out of the given matrix product ________

i) (AB)TC
ii) CTC(AB) 
iii) CTAB
iv) ATABBTC


Select the correct option from the given alternatives:

If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ________


Select the correct option from the given alternatives:

For suitable matrices A, B, the false statement is _____


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (A + 2BT)T = AT + 2B


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (3A - 5BT)T = 3AT – 5B


Answer the following question:

If A = `[(2, 1, -3),(0, 2, 6)]`, B = `[(1, 0, -2),(3, -1, 4)]`, find ABT and ATB


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×