हिंदी

If A = [2-13-241] and B = [03-42-11], verify that (AB)T = BT AT - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that  (AB)T = BT AT 

योग

उत्तर

AB = `[(2, -1),(3, -2),(4, 1)] [(0, 3, -4),(2, -1, 1)]`

= `[(0 - 2, 6 + 1, -8 - 1),(0 - 4, 9 + 2, -12 - 2),(0 + 2, 12 - 1, -16 + 1)]`

= `[(-2, 7, -9),(-4, 11, -14),(2, 11, -15)]`

∴ (AB)T = `[(-2, -4, 2),(7, 11, 11),(-9, -14, -15)]`  ...(1)

AT = `[(2, 3, 4),(-1, -2, 1)]` and BT = `[(0, 2),(3, -1),(-4, 1)]`

∴ BTAT = `[(0, 2),(3, -1),(-4, 1)] [(2, 3, 4),(-1, -2, 1)]`

= `[(0 - 2, 0 - 4, 0 + 2),(6 + 1, 9 + 2, 12 - 1),(-8 - 1, -12 - 2, -16 + 1)]`

= `[(-2, -4, 2),(7, 11, 11),(-9, -14, -15)]`   ...(2)

From (1) and (2),

(AB)T = BTAT

shaalaa.com
Matrices - Properties of Transpose of a Matrix
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants and Matrices - Exercise 4.7 [पृष्ठ ९८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 4 Determinants and Matrices
Exercise 4.7 | Q 13. (i) | पृष्ठ ९८

संबंधित प्रश्न

Find AT, if A = `[(1, 3),(-4, 5)]`


Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, Prove that (3A)T = 3AT 


If A = `[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]` where i = `sqrt(-1)` Prove that AT = – A


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A – C)T = AT – CT 


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find AT + 4BT


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find 5AT – 5BT


If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where 

A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where

A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`


If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = AT BT


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, show that ATA = I, where I is the unit matrix of order 2


Select the correct option from the given alternatives:

Consider the matrices A = `[(4, 6, -1),(3, 0, 2),(1, -2, 5)]`, B = `[(2, 4),(0, 1),(-1, 2)]`, C = `[(3),(1),(2)]` out of the given matrix product ________

i) (AB)TC
ii) CTC(AB) 
iii) CTAB
iv) ATABBTC


Select the correct option from the given alternatives:

If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ________


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (A + 2BT)T = AT + 2B


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (3A - 5BT)T = 3AT – 5B


Answer the following question:

If A = `[(2, 1, -3),(0, 2, 6)]`, B = `[(1, 0, -2),(3, -1, 4)]`, find ABT and ATB


Answer the following question:

If A = `[(2, -4),(3, -2),(0, 1)]`, B = `[(1, -1, 2),(-2, 1, 0)]`, show that (AB)T = BTAT


Answer the following question:

If A = `[(3, -4),(1, -1)]`, prove that An = `[(1 + 2"n", -4"n"),("n", 1 - 2"n")]`, for all n ∈ N


Answer the following question:

If A = `[(costheta, sintheta),(-sintheta, costheta)]`, prove that An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×