English

If A = [2-13-241] and B = [03-42-11], verify that (AB)T = BT AT - Mathematics and Statistics

Advertisements
Advertisements

Question

If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that  (AB)T = BT AT 

Sum

Solution

AB = `[(2, -1),(3, -2),(4, 1)] [(0, 3, -4),(2, -1, 1)]`

= `[(0 - 2, 6 + 1, -8 - 1),(0 - 4, 9 + 2, -12 - 2),(0 + 2, 12 - 1, -16 + 1)]`

= `[(-2, 7, -9),(-4, 11, -14),(2, 11, -15)]`

∴ (AB)T = `[(-2, -4, 2),(7, 11, 11),(-9, -14, -15)]`  ...(1)

AT = `[(2, 3, 4),(-1, -2, 1)]` and BT = `[(0, 2),(3, -1),(-4, 1)]`

∴ BTAT = `[(0, 2),(3, -1),(-4, 1)] [(2, 3, 4),(-1, -2, 1)]`

= `[(0 - 2, 0 - 4, 0 + 2),(6 + 1, 9 + 2, 12 - 1),(-8 - 1, -12 - 2, -16 + 1)]`

= `[(-2, -4, 2),(7, 11, 11),(-9, -14, -15)]`   ...(2)

From (1) and (2),

(AB)T = BTAT

shaalaa.com
Matrices - Properties of Transpose of a Matrix
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.7 [Page 98]

APPEARS IN

RELATED QUESTIONS

Find AT, if A = `[(2, -6, 1),(-4, 0, 5)]`


If [aij]3×3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices?


If A = `[(5, -3),(4, -3),(-2, 1)]`, Prove that (2A)T = 2AT 


If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, Prove that (3A)T = 3AT 


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A + B)T = AT + BT


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A – C)T = AT – CT 


If A = `[(5, 4),(-2, 3)]` and B = `[(-1, 3),(4, -1)]`, then find CT , such that 3A – 2B + C = I, where I is the unit matrix of order 2


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find 5AT – 5BT


If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where 

A = `[(1, 2, 4),(3, 2, 1),(-2, -3, 2)]`


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where

A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(4, -2),(3, -5)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, show that ATA = I, where I is the unit matrix of order 2


Select the correct option from the given alternatives:

If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ________


Select the correct option from the given alternatives:

If A = `[(alpha, 2),(2, alpha)]` and |A3| = 125, then α = _______


Select the correct option from the given alternatives:

For suitable matrices A, B, the false statement is _____


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (A + 2BT)T = AT + 2B


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (3A - 5BT)T = 3AT – 5B


Answer the following question:

If A = `[(2, 1, -3),(0, 2, 6)]`, B = `[(1, 0, -2),(3, -1, 4)]`, find ABT and ATB


Answer the following question:

If A = `[(2, -4),(3, -2),(0, 1)]`, B = `[(1, -1, 2),(-2, 1, 0)]`, show that (AB)T = BTAT


Answer the following question:

If A = `[(costheta, sintheta),(-sintheta, costheta)]`, prove that An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×