English

If [aij]3x3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices? - Mathematics and Statistics

Advertisements
Advertisements

Question

If [aij]3×3 where aij = 2(i – j). Find A and AT. State whether A and AT are symmetric or skew-symmetric matrices?

Sum

Solution

A = [aij]3×3 = `[("a"_11, "a"_12, "a"_13),("a"_21, "a"_22, "a"_23),("a"_31, "a"_32, "a"_33)]`

Given that : aij = 2(i – j),

∴ a11 = 2(1 – 1) = 0,

a12 = 2(1 – 2) = –2,

a13 = 2(1 – 3)= –4,

a21 = 2(2 – 1) = 2,

a22 = 2(2 – 2) = 0,

a23 = 2(2 – 3) = – 2,

a31 = 2(3 – 1) = 4,

a32 = 2(3 – 2) = 2,

a33 = 2(3 – 3) = 0

∴ A = `[(0, -2, -4),(2, 0, -2),(4, 2, 0)]`

∴ AT = `[(0, 2, 4),(-2, 0, 2),(-4, -2, 0)]`

∴ AT = `-[(0, -2, -4),(2, 0, -2),(4, 2, 0)] = -"A"`

∴ AT = – A and A = – AT

∴ A and AT both are skew-symmetric matrices.

shaalaa.com
Matrices - Properties of Transpose of a Matrix
  Is there an error in this question or solution?
Chapter 4: Determinants and Matrices - Exercise 4.7 [Page 97]

APPEARS IN

RELATED QUESTIONS

Find AT, if A = `[(1, 3),(-4, 5)]`


If A = `[(0, 1 + 2"i", "i" - 2),(-1 - 2"i", 0, -7),(2 - "i", 7, 0)]` where i = `sqrt(-1)` Prove that AT = – A


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A + B)T = AT + BT


If A = `[(2, -3),(5, -4),(-6, 1)]`, B = `[(2, 1),(4, -1),(-3, 3)]` and C = `[(1, 2),(-1, 4),(-2, 3)]` then show that (A – C)T = AT – CT 


If A = `[(7, 3, 0),(0, 4, -2)]`, B = `[(0, -2, 3),(2, 1, -4)]` then find AT + 4BT


If A = `[(1, 0, 1),(3, 1, 2)]`, B = `[(2, 1, -4),(3, 5, -2)]` and C = `[(0, 2, 3),(-1, -1, 0)]`, verify that (A + 2B + 3C)T = AT + 2BT + 3CT


If A = `[(-1, 2, 1),(-3, 2, -3)]` and B = `[(2, 1),(-3, 2),(-1, 3)]`, prove that (A + BT)T = AT + B


Prove that A + AT is a symmetric and A – AT is a skew symmetric matrix, where

A = `[(5, 2, -4),(3, -7, 2),(4, -5, -3)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(4, -2),(3, -5)]`


Express the following matrix as the sum of a symmetric and a skew symmetric matrix

`[(3, 3, -1),(-2, -2, 1),(-4, -5, 2)]`


If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that  (AB)T = BT AT 


If A = `[(2, -1),(3, -2),(4, 1)]` and B = `[(0, 3, -4),(2, -1, 1)]`, verify that (BA)T = AT BT


If A = `[(cos alpha, sin alpha),(-sin alpha, cos alpha)]`, show that ATA = I, where I is the unit matrix of order 2


Select the correct option from the given alternatives:

Consider the matrices A = `[(4, 6, -1),(3, 0, 2),(1, -2, 5)]`, B = `[(2, 4),(0, 1),(-1, 2)]`, C = `[(3),(1),(2)]` out of the given matrix product ________

i) (AB)TC
ii) CTC(AB) 
iii) CTAB
iv) ATABBTC


Select the correct option from the given alternatives:

If A = `[(1, 2, 2),(2, 1, -2),("a", 2, "b")]` is a matrix satisfying the equation AAT = 9I, where I is the identity matrix of order 3, then the ordered pair (a, b) is equal to ________


Select the correct option from the given alternatives:

If A = `[(alpha, 2),(2, alpha)]` and |A3| = 125, then α = _______


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (A + 2BT)T = AT + 2B


Answer the following question:

If A = `[(2, -3),(3, -2),(-1, 4)]`, B = `[(-3, 4, 1),(2, -1, -3)]` Verify (3A - 5BT)T = 3AT – 5B


Answer the following question:

If A = `[(2, 1, -3),(0, 2, 6)]`, B = `[(1, 0, -2),(3, -1, 4)]`, find ABT and ATB


Answer the following question:

If A = `[(2, -4),(3, -2),(0, 1)]`, B = `[(1, -1, 2),(-2, 1, 0)]`, show that (AB)T = BTAT


Answer the following question:

If A = `[(3, -4),(1, -1)]`, prove that An = `[(1 + 2"n", -4"n"),("n", 1 - 2"n")]`, for all n ∈ N


Answer the following question:

If A = `[(costheta, sintheta),(-sintheta, costheta)]`, prove that An = `[(cos"n"theta, sin"n"theta),(-sin"n"theta, cos"n"theta)]`, for all n ∈ N


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×