Advertisements
Advertisements
प्रश्न
बिंदू O केंद्र असलेल्या वर्तुळाला रेषा l बिंदू P मध्ये स्पर्श करते. जर वर्तुळाची त्रिज्या 9 सेमी असेल, तर खालील प्रश्नांची उत्तरे लिहा.
(1) d(O, P) = किती? का?
(2) जर d(O, Q) = 8 सेमी असेल. तर बिंदू Q चे स्थान कोठे असेल?
(3) d(O, R)=15 सेमी असेल तर बिंदू R ची किती स्थाने रेषा l वर असतील? ते बिंदू P किती अंतरावर असतील?
उत्तर
(1) रेख OP ही वर्तुळाची त्रिज्या आहे.
∴ d(O, P) = 9 सेमी
(2) येथे, 8 सेमी < 9 सेमी
∴ d(O, Q) < d(O, P)
∴ d(O, Q) < त्रिज्या
∴ बिंदू Q हा वर्तुळाच्या अंतर्भागात आहे.
(3) रेषा l वर बिंदू R ची दोन स्थाने असू शकतात.
d(O, R) = 15 सेमी
आता, ΔOPR मध्ये, ∠OPR = 90° .....[स्पर्शिका -त्रिज्या प्रमेय]
∴ OR2 = OP2 + PR2 ....[पायथागोरसचे प्रमेय]
∴ 152 = 92 + PR2
∴ 225 = 81 + PR2
∴ PR2 = 225 - 81 = 144
∴ PR = `sqrt144` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
= 12 सेमी
∴ बिंदू R चे प्रत्येक स्थान बिंदू P पासून 12 सेमी अंतरावर असेल.
संबंधित प्रश्न
एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?
सोबतच्या आकृतीत, बिंदू M वर्तुळकेंद्र आणि रेख KL हा स्पर्शिकाखंड आहे. जर MK = 12, KL = `6sqrt3` तर
(1) वर्तुळाची त्रिज्या काढा.
(2) ∠K आणि ∠M यांची मापे ठरवा.
आकृती मध्ये, केंद्र N असलेले वर्तुळ केंद्र M असणाऱ्या वर्तुळाला बिंदू T मध्ये स्पर्श करते. मोठ्या वर्तुळाची त्रिज्या लहान वर्तुळाला बिंदू S मध्ये स्पर्श करते. जर मोठ्या व लहान वर्तुळांच्या त्रिज्या अनुक्रमे 9 सेमी व 2.5 सेमी असतील तर खालील प्रश्नांची उत्तरे शोधा आणि त्यांवरून MS : SR हे गुणोत्तर काढा.
(1) MT = किती?
(2) MN = किती?
(3) ∠NSM = किती?
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात हे प्रमेय सिद्ध करण्यासाठी आकृतीच्या आधारे खालील कृती पूर्ण करा.
पक्ष: `square`
साध्य: `square`
सिद्धता:
त्रिज्या AP आणि AQ काढून प्रमेयाची खाली दिलेली सिद्धता रिकाम्या जागा भरून पूर्ण करा.
ΔPAD आणि ΔQAD यांमध्ये,
बाजू PA ≅ बाजू `square` ...........[एकाच वर्तुळाच्या त्रिज्या]
बाजू AD ≅ बाजू AD ...............[`square`]
∠APD ≅ ∠AQD = 90° ............[स्पर्शिका-त्रिज्या प्रमेय]
∴ ΔPAD ≅ ΔQAD ..................[`square`]
∴ बाजू DP ≅ बाजू DQ ...............[`square`]
आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
सिद्धता:
ΔRMO आणि ΔRNO यांमध्ये,
∠RMO ≅ ∠RNO = 90° ...............[`square`]
कर्ण OR ≅ कर्ण OR …..............[`square`]
बाजू OM ≅ बाजू [`square`] ..........…[एकाच वर्तुळाच्या त्रिज्या]
∴ ΔRMO ≅ ΔRNO ….......[`square`]
∠MOR ≅ ∠NOR
तसेच, ∠MRO ≅ [`square`] ......................[`square`]
∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.
दिलेल्या आकृतीत, Q केंद्र असलेल्या वर्तुळाच्या रेख PM आणि PN स्पर्शिका आहेत. जर ∠MPN = 40°, तर ∠MQN चे माप काढा.
वरील आकृतीत, C केंद्र असलेल्या वर्तुळाला A या बाह्यबिंदूतून AB आणि AD हे स्पर्शिकाखंड काढले आहेत. तर सिद्ध करा:
∠A = `1/2` [m(कंस BYD) - m(कंस BXD)]