Advertisements
Advertisements
Question
बिंदू O केंद्र असलेल्या वर्तुळाला रेषा l बिंदू P मध्ये स्पर्श करते. जर वर्तुळाची त्रिज्या 9 सेमी असेल, तर खालील प्रश्नांची उत्तरे लिहा.
(1) d(O, P) = किती? का?
(2) जर d(O, Q) = 8 सेमी असेल. तर बिंदू Q चे स्थान कोठे असेल?
(3) d(O, R)=15 सेमी असेल तर बिंदू R ची किती स्थाने रेषा l वर असतील? ते बिंदू P किती अंतरावर असतील?
Solution
(1) रेख OP ही वर्तुळाची त्रिज्या आहे.
∴ d(O, P) = 9 सेमी
(2) येथे, 8 सेमी < 9 सेमी
∴ d(O, Q) < d(O, P)
∴ d(O, Q) < त्रिज्या
∴ बिंदू Q हा वर्तुळाच्या अंतर्भागात आहे.
(3) रेषा l वर बिंदू R ची दोन स्थाने असू शकतात.
d(O, R) = 15 सेमी
आता, ΔOPR मध्ये, ∠OPR = 90° .....[स्पर्शिका -त्रिज्या प्रमेय]
∴ OR2 = OP2 + PR2 ....[पायथागोरसचे प्रमेय]
∴ 152 = 92 + PR2
∴ 225 = 81 + PR2
∴ PR2 = 225 - 81 = 144
∴ PR = `sqrt144` .....[दोन्ही बाजूंचे वर्गमूळ घेऊन]
= 12 सेमी
∴ बिंदू R चे प्रत्येक स्थान बिंदू P पासून 12 सेमी अंतरावर असेल.
RELATED QUESTIONS
सोबतच्या आकृतीत, केंद्र C असलेल्या वर्तुळाची त्रिज्या 6 सेमी आहे. रेषा AB या वर्तुळाला बिंदू A मध्ये स्पर्श करते. या माहितीवरून खालील प्रश्नांची उत्तरे द्या.
(1) ∠CAB चे माप किती अंश आहे? का?
(2) बिंदू C हा रेषा AB पासून किती अंतरावर आहे? का?
(3) जर d(A,B) = 6 सेमी, तर d(B,C) काढा.
(4) ∠ABC चे माप किती अंश आहे? का?
आकृती मध्ये, केंद्र A व B असणारी वर्तुळे परस्परांना बिंदू E मध्ये स्पर्श करतात. रेषा l ही त्यांची सामाईक स्पर्शिका त्यांना अनुक्रमे C व D मध्ये स्पर्श करते. जर वर्तुळांच्या त्रिज्या अनुक्रमे 4 सेमी व 6 सेमी असतील, तर रेख CD ची लांबी किती असेल?
एका वर्तुळाच्या केंद्रापासून 12.5 सेमी अंतरावरील एका बिंदूतून त्या वर्तुळाला काढलेल्या स्पर्शिकाखंडाची लांबी 12 सेमी आहे. तर त्या वर्तुळाचा व्यास किती सेमी आहे?
शेजारील आकृतीत, रेषा l ही केंद्र O असलेल्या वर्तुळाला बिंदू P मध्ये स्पर्श करते. बिंदू Q हा त्रिज्या OP चा मध्यबिंदू आहे. बिंदू Q ला सामावणारी जीवा RS || रेषा l. जर RS 12 सेमी असेल, तर वर्तुळाची त्रिज्या काढा.
आकृती मध्ये, केंद्र C असलेल्या वर्तुळाचा रेख AB हा व्यास आहे. वर्तुळाची स्पर्शिका PQ वर्तुळाला बिंदू T मध्ये स्पर्श करते. रेख AP ⊥ रेषा PQ आणि रेख BQ ⊥ रेषा PQ. तर सिद्ध करा - रेख CP ≅ रेख CQ.
आकृतीत रेख RM आणि रेख RN हे केंद्र O असलेल्या वर्तुळाचे स्पर्शिका खंड आहेत, तर रेख OR हा ∠MRN आणि ∠MON या दोन्ही कोनांचा दुभाजक आहे, हे सिद्ध करण्यासाठी खालील कृती पूर्ण करा.
सिद्धता:
ΔRMO आणि ΔRNO यांमध्ये,
∠RMO ≅ ∠RNO = 90° ...............[`square`]
कर्ण OR ≅ कर्ण OR …..............[`square`]
बाजू OM ≅ बाजू [`square`] ..........…[एकाच वर्तुळाच्या त्रिज्या]
∴ ΔRMO ≅ ΔRNO ….......[`square`]
∠MOR ≅ ∠NOR
तसेच, ∠MRO ≅ [`square`] ......................[`square`]
∴ रेख OR ∠MRN आणि ∠MON या दोन्ही कोनांची दुभाजक आहे.
खालील प्रमेय सिद्ध करा:
वर्तुळाच्या बाह्यभागातील बिंदूपासून त्या वर्तुळाला काढलेले स्पर्शिकाखंड एकरूप असतात.
आकृतीमध्ये, O हा वर्तुळाचा केंद्रबिंदू आहे. रेषा AQ ही स्पर्शिका आहे. जर OP = 3 आणि m(कंस PM) = 120° असेल, तर AP ची लांबी काढा?
'O' केंद्र असलेल्या वर्तुळाला P या बाह्यबिंदूतून AP ही A बिंदूपाशी स्पर्शिका काढली आहे. जर OP = 12 सेमी व ∠OPA = 30°, तर वर्तुळाची त्रिज्या ______ असेल.
वरील आकृतीत, C केंद्र असलेल्या वर्तुळाला A या बाह्यबिंदूतून AB आणि AD हे स्पर्शिकाखंड काढले आहेत. तर सिद्ध करा:
∠A = `1/2` [m(कंस BYD) - m(कंस BXD)]